SentenceTransformer
/
examples
/unsupervised_learning
/query_generation
/3_programming_semantic_search.py
""" | |
In this example we train a semantic search model to search through Wikipedia | |
articles about programming articles & technologies. | |
We use the text paragraphs from the following Wikipedia articles: | |
Assembly language, C , C Sharp , C++, Go , Java , JavaScript, Keras, Laravel, MATLAB, Matplotlib, MongoDB, MySQL, Natural Language Toolkit, NumPy, pandas (software), Perl, PHP, PostgreSQL, Python , PyTorch, R , React, Rust , Scala , scikit-learn, SciPy, Swift , TensorFlow, Vue.js | |
In: | |
1_programming_query_generation.py - We generate queries for all paragraphs from these articles | |
2_programming_train_bi-encoder.py - We train a SentenceTransformer bi-encoder with these generated queries. This results in a model we can then use for sematic search (for the given Wikipedia articles). | |
3_programming_semantic_search.py - Shows how the trained model can be used for semantic search | |
""" | |
from sentence_transformers import SentenceTransformer, util | |
import gzip | |
import json | |
import os | |
# Load the model we trained in 2_programming_train_bi-encoder.py | |
model = SentenceTransformer('output/programming-model') | |
# Load the corpus | |
docs = [] | |
corpus_filepath = 'wiki-programmming-20210101.jsonl.gz' | |
if not os.path.exists(corpus_filepath): | |
util.http_get('https://sbert.net/datasets/wiki-programmming-20210101.jsonl.gz', corpus_filepath) | |
with gzip.open(corpus_filepath, 'rt') as fIn: | |
for line in fIn: | |
data = json.loads(line.strip()) | |
title = data['title'] | |
for p in data['paragraphs']: | |
if len(p) > 100: #Only take paragraphs with at least 100 chars | |
docs.append((title, p)) | |
paragraph_emb = model.encode([d[1] for d in docs], convert_to_tensor=True) | |
print("Available Wikipedia Articles:") | |
print(", ".join(sorted(list(set([d[0] for d in docs]))))) | |
# Example for semantic search | |
while True: | |
query = input("Query: ") | |
query_emb = model.encode(query, convert_to_tensor=True) | |
hits = util.semantic_search(query_emb, paragraph_emb, top_k=3)[0] | |
for hit in hits: | |
doc = docs[hit['corpus_id']] | |
print("{:.2f}\t{}\t\t{}".format(hit['score'], doc[0], doc[1])) | |
print("\n=================\n") | |