""" In this example we train a semantic search model to search through Wikipedia articles about programming articles & technologies. We use the text paragraphs from the following Wikipedia articles: Assembly language, C , C Sharp , C++, Go , Java , JavaScript, Keras, Laravel, MATLAB, Matplotlib, MongoDB, MySQL, Natural Language Toolkit, NumPy, pandas (software), Perl, PHP, PostgreSQL, Python , PyTorch, R , React, Rust , Scala , scikit-learn, SciPy, Swift , TensorFlow, Vue.js In: 1_programming_query_generation.py - We generate queries for all paragraphs from these articles 2_programming_train_bi-encoder.py - We train a SentenceTransformer bi-encoder with these generated queries. This results in a model we can then use for sematic search (for the given Wikipedia articles). 3_programming_semantic_search.py - Shows how the trained model can be used for semantic search """ from sentence_transformers import SentenceTransformer, util import gzip import json import os # Load the model we trained in 2_programming_train_bi-encoder.py model = SentenceTransformer('output/programming-model') # Load the corpus docs = [] corpus_filepath = 'wiki-programmming-20210101.jsonl.gz' if not os.path.exists(corpus_filepath): util.http_get('https://sbert.net/datasets/wiki-programmming-20210101.jsonl.gz', corpus_filepath) with gzip.open(corpus_filepath, 'rt') as fIn: for line in fIn: data = json.loads(line.strip()) title = data['title'] for p in data['paragraphs']: if len(p) > 100: #Only take paragraphs with at least 100 chars docs.append((title, p)) paragraph_emb = model.encode([d[1] for d in docs], convert_to_tensor=True) print("Available Wikipedia Articles:") print(", ".join(sorted(list(set([d[0] for d in docs]))))) # Example for semantic search while True: query = input("Query: ") query_emb = model.encode(query, convert_to_tensor=True) hits = util.semantic_search(query_emb, paragraph_emb, top_k=3)[0] for hit in hits: doc = docs[hit['corpus_id']] print("{:.2f}\t{}\t\t{}".format(hit['score'], doc[0], doc[1])) print("\n=================\n")