t1_25k_v2_tag5
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-7B-Instruct on the t1_25k_v2_tag5 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2605
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3427 | 0.0817 | 100 | 0.3218 |
0.2658 | 0.1634 | 200 | 0.3040 |
0.2831 | 0.2451 | 300 | 0.2921 |
0.2759 | 0.3268 | 400 | 0.2846 |
0.3056 | 0.4085 | 500 | 0.2798 |
0.2839 | 0.4902 | 600 | 0.2763 |
0.3051 | 0.5719 | 700 | 0.2703 |
0.3155 | 0.6536 | 800 | 0.2688 |
0.2373 | 0.7353 | 900 | 0.2634 |
0.2561 | 0.8170 | 1000 | 0.2620 |
0.2546 | 0.8987 | 1100 | 0.2609 |
0.2504 | 0.9804 | 1200 | 0.2606 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 6