t2_25k_v2_tag5_processed
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the t2_25k_v2_tag5_processed dataset. It achieves the following results on the evaluation set:
- Loss: 0.1914
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4392 | 0.0634 | 100 | 0.2912 |
0.2845 | 0.1268 | 200 | 0.2614 |
0.2933 | 0.1902 | 300 | 0.2460 |
0.2773 | 0.2536 | 400 | 0.2335 |
0.2758 | 0.3171 | 500 | 0.2255 |
0.2858 | 0.3805 | 600 | 0.2217 |
0.2113 | 0.4439 | 700 | 0.2136 |
0.2754 | 0.5073 | 800 | 0.2105 |
0.2672 | 0.5707 | 900 | 0.2041 |
0.2721 | 0.6341 | 1000 | 0.2013 |
0.2707 | 0.6975 | 1100 | 0.1984 |
0.2538 | 0.7609 | 1200 | 0.1953 |
0.2143 | 0.8244 | 1300 | 0.1928 |
0.1926 | 0.8878 | 1400 | 0.1921 |
0.2476 | 0.9512 | 1500 | 0.1915 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 6