agenttuning_v4_10k_tag5
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the agenttuning_v4_10k_tag5 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3634
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5887 | 0.0386 | 100 | 0.5013 |
0.5464 | 0.0772 | 200 | 0.4804 |
0.5244 | 0.1158 | 300 | 0.4643 |
0.454 | 0.1544 | 400 | 0.4629 |
0.455 | 0.1930 | 500 | 0.4487 |
0.5026 | 0.2316 | 600 | 0.4363 |
0.48 | 0.2702 | 700 | 0.4406 |
0.4557 | 0.3088 | 800 | 0.4192 |
0.5715 | 0.3474 | 900 | 0.4098 |
0.3408 | 0.3860 | 1000 | 0.4053 |
0.3671 | 0.4245 | 1100 | 0.3955 |
0.5876 | 0.4631 | 1200 | 0.4024 |
0.45 | 0.5017 | 1300 | 0.4049 |
0.336 | 0.5403 | 1400 | 0.3939 |
0.5008 | 0.5789 | 1500 | 0.3893 |
0.3772 | 0.6175 | 1600 | 0.3889 |
0.2965 | 0.6561 | 1700 | 0.3778 |
0.4337 | 0.6947 | 1800 | 0.3701 |
0.3552 | 0.7333 | 1900 | 0.3686 |
0.3369 | 0.7719 | 2000 | 0.3660 |
0.2917 | 0.8105 | 2100 | 0.3655 |
0.3829 | 0.8491 | 2200 | 0.3661 |
0.4447 | 0.8877 | 2300 | 0.3646 |
0.4003 | 0.9263 | 2400 | 0.3638 |
0.3373 | 0.9649 | 2500 | 0.3639 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 13