agenttuning_v2_15k_tag5
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the agenttuning_v2_15k_tag5 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4994
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7186 | 0.0281 | 100 | 0.6700 |
0.7683 | 0.0562 | 200 | 0.6378 |
0.4844 | 0.0842 | 300 | 0.6146 |
0.3803 | 0.1123 | 400 | 0.6067 |
0.4946 | 0.1404 | 500 | 0.6136 |
0.3734 | 0.1685 | 600 | 0.6001 |
0.5855 | 0.1966 | 700 | 0.5941 |
0.4913 | 0.2247 | 800 | 0.5866 |
0.5574 | 0.2527 | 900 | 0.5815 |
0.4587 | 0.2808 | 1000 | 0.5788 |
0.5672 | 0.3089 | 1100 | 0.5623 |
0.5146 | 0.3370 | 1200 | 0.5607 |
0.5222 | 0.3651 | 1300 | 0.5461 |
0.4087 | 0.3931 | 1400 | 0.5524 |
0.4473 | 0.4212 | 1500 | 0.5461 |
0.4301 | 0.4493 | 1600 | 0.5413 |
0.4627 | 0.4774 | 1700 | 0.5397 |
0.4617 | 0.5055 | 1800 | 0.5291 |
0.5551 | 0.5336 | 1900 | 0.5290 |
0.4792 | 0.5616 | 2000 | 0.5192 |
0.5295 | 0.5897 | 2100 | 0.5211 |
0.4153 | 0.6178 | 2200 | 0.5207 |
0.493 | 0.6459 | 2300 | 0.5155 |
0.7251 | 0.6740 | 2400 | 0.5141 |
0.3545 | 0.7020 | 2500 | 0.5153 |
0.4691 | 0.7301 | 2600 | 0.5110 |
0.3731 | 0.7582 | 2700 | 0.5091 |
0.4002 | 0.7863 | 2800 | 0.5063 |
0.4789 | 0.8144 | 2900 | 0.5041 |
0.435 | 0.8425 | 3000 | 0.5022 |
0.4143 | 0.8705 | 3100 | 0.5005 |
0.3868 | 0.8986 | 3200 | 0.5001 |
0.4968 | 0.9267 | 3300 | 0.4996 |
0.4871 | 0.9548 | 3400 | 0.4994 |
0.3787 | 0.9829 | 3500 | 0.4995 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 23