agenttuning_v2_15k_tag4
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the agenttuning_v2_15k_tag4 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3589
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7145 | 0.0286 | 100 | 0.4777 |
0.5212 | 0.0572 | 200 | 0.4385 |
0.4558 | 0.0858 | 300 | 0.4370 |
0.4211 | 0.1144 | 400 | 0.4323 |
0.2821 | 0.1430 | 500 | 0.4279 |
0.4548 | 0.1716 | 600 | 0.4251 |
0.3571 | 0.2002 | 700 | 0.4241 |
0.2706 | 0.2288 | 800 | 0.4255 |
0.3376 | 0.2574 | 900 | 0.4176 |
0.4035 | 0.2860 | 1000 | 0.4220 |
0.4495 | 0.3146 | 1100 | 0.4090 |
0.3477 | 0.3432 | 1200 | 0.4125 |
0.3128 | 0.3717 | 1300 | 0.4060 |
0.3558 | 0.4003 | 1400 | 0.4107 |
0.3695 | 0.4289 | 1500 | 0.4061 |
0.343 | 0.4575 | 1600 | 0.4066 |
0.5475 | 0.4861 | 1700 | 0.4010 |
0.2354 | 0.5147 | 1800 | 0.3888 |
0.5055 | 0.5433 | 1900 | 0.3893 |
0.3117 | 0.5719 | 2000 | 0.3871 |
0.5256 | 0.6005 | 2100 | 0.3764 |
0.4246 | 0.6291 | 2200 | 0.3756 |
0.2611 | 0.6577 | 2300 | 0.3704 |
0.3354 | 0.6863 | 2400 | 0.3718 |
0.3213 | 0.7149 | 2500 | 0.3674 |
0.4258 | 0.7435 | 2600 | 0.3647 |
0.3216 | 0.7721 | 2700 | 0.3601 |
0.2982 | 0.8007 | 2800 | 0.3620 |
0.3676 | 0.8293 | 2900 | 0.3625 |
0.3482 | 0.8579 | 3000 | 0.3620 |
0.4485 | 0.8865 | 3100 | 0.3605 |
0.3042 | 0.9151 | 3200 | 0.3600 |
0.3637 | 0.9437 | 3300 | 0.3600 |
0.2896 | 0.9723 | 3400 | 0.3593 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 12