xlsr53-ptbr-3 / README.md
lejonck's picture
End of training
7565faf verified
metadata
library_name: transformers
license: apache-2.0
base_model: lejonck/xlsr53-ptbr-2
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: xlsr53-ptbr-3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: pt
          split: None
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 0.98989898989899

xlsr53-ptbr-3

This model is a fine-tuned version of lejonck/xlsr53-ptbr-2 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7741
  • Wer: 0.9899
  • Cer: 10.8976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Cer
5.1364 1.0 250 4.1358 0.9949 10.6432
5.0838 2.0 500 4.0543 0.9941 10.5248
4.3622 3.0 750 3.9937 0.9924 10.2184
4.1477 4.0 1000 3.9178 0.9924 10.2848
4.4121 5.0 1250 3.8755 0.9924 10.3005
3.9327 6.0 1500 3.8408 0.9907 10.4761
4.0681 7.0 1750 3.8321 0.9916 10.7547
3.9356 8.0 2000 3.7912 0.9916 10.5872
4.3374 9.0 2250 3.7739 0.9899 10.6934
3.7845 10.0 2500 3.7741 0.9899 10.8360

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0