Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: oopsung/llama2-7b-n-ox-test-v1
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 17920f1e48063563_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/17920f1e48063563_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: leixa/e06a441c-80fa-4171-b7ee-f47e3dd287d0
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 1200
micro_batch_size: 4
mlflow_experiment_name: /tmp/17920f1e48063563_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.999
  adam_epsilon: 1e-08
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: acopia-grant
wandb_mode: online
wandb_name: cbdefe7e-fafe-42a5-a1f0-3390db27e54b
wandb_project: Gradients-On-112
wandb_run: your_name
wandb_runid: cbdefe7e-fafe-42a5-a1f0-3390db27e54b
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

e06a441c-80fa-4171-b7ee-f47e3dd287d0

This model is a fine-tuned version of oopsung/llama2-7b-n-ox-test-v1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1771

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1200

Training results

Training Loss Epoch Step Validation Loss
No log 0.0017 1 2.7583
0.182 0.2506 150 0.1937
0.1821 0.5013 300 0.1962
0.1836 0.7519 450 0.1935
0.2958 1.0025 600 0.1913
0.1936 1.2531 750 0.1825
0.259 1.5038 900 0.1783
0.3115 1.7544 1050 0.1875
0.233 2.0050 1200 0.1771

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for leixa/e06a441c-80fa-4171-b7ee-f47e3dd287d0

Adapter
(267)
this model