metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:208
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: |
Name : SkillAdvance Academy
Category: Online Learning Platform, Professional Development
Department: Engineering
Location: Austin, TX
Amount: 1875.67
Card: Continuous Improvement Initiative
Trip Name: unknown
sentences:
- |
Name : Black Wolf
Category: Luxury Vehicle Rentals, Corporate Services
Department: Executive
Location: Tokyo, Japan
Amount: 1478.67
Card: Execute Account
Trip Name: Tokyo Summit 2023
- |
Name : Kreutz & Partners
Category: Strategic Consulting
Department: Marketing
Location: Zurich, Switzerland
Amount: 982.75
Card: Digital Growth Strategy
Trip Name: unknown
- |
Name : Nordiska Hosting Collective
Category: Cloud Storage Solutions, Data Security Services
Department: IT Operations
Location: Helsinki, Finland
Amount: 1439.57
Card: Annual Data Management Plan
Trip Name: unknown
- source_sentence: |
Name : FusionLink
Category: Event Management Solutions, Digital Strategy Services
Department: Sales
Location: New York, NY
Amount: 982.75
Card: Product Launch Activation
Trip Name: unknown
sentences:
- |
Name : Globetrotter Partners
Category: Lodging Services, Corporate Retreat Planning
Department: Executive
Location: Banff, Canada
Amount: 1559.75
Card: Leadership Development Seminar
Trip Name: unknown
- |
Name : SkyHigh Consultancies
Category: Consulting Services, Business Travel Agencies
Department: Sales
Location: Geneva, Switzerland
Amount: 1349.58
Card: Strategic Client Meetings
Trip Name: Global Expansion Initiative
- |
Name : Willink Labs
Category: Consulting Services, Professional Services
Department: Engineering
Location: San Francisco, CA
Amount: 4500.0
Card: Backend Systems Upgrade Analysis
Trip Name: unknown
- source_sentence: |
Name : RBC
Category: Transaction Processing, Financial Services
Department: Finance
Location: Limassol, Cyprus
Amount: 843.56
Card: Quarterly Financial Management
Trip Name: unknown
sentences:
- |
Name : Kepler Dynamics
Category: Strategic Consultancy, Tech Solutions
Department: Finance
Location: Zurich, Switzerland
Amount: 2375.88
Card: Integration Strategy Review
Trip Name: unknown
- |
Name : Global Interconnectivity Corp
Category: Data Management Services, Network Infrastructure Consultants
Department: Engineering
Location: Zurich, Switzerland
Amount: 1987.54
Card: Unified Communication Rollout
Trip Name: unknown
- |
Name : TechSupply Inc.
Category: Electronics Retail, Supply Chain
Department: Research & Development
Location: Berlin, Germany
Amount: 742.45
Card: New Prototype Equipment
Trip Name: unknown
- source_sentence: |
Name : EcoClean Systems
Category: Environmental Services, Industrial Equipment Care
Department: Office Administration
Location: San Francisco, CA
Amount: 952.63
Card: Essential Facility Sustainability
Trip Name: unknown
sentences:
- |
Name : Wunder
Category: Advanced Electronics
Department: Operations
Location: Munich, Germany
Amount: 1643.87
Card: Enterprise Systems Initiative
Trip Name: Q2-MUC-TechOps
- |
Name : Pacific Union Services
Category: Financial Consulting, Subscription Management
Department: Finance
Location: Singapore
Amount: 129.58
Card: Quarterly Financial Account Review
Trip Name: unknown
- |
Name : FirmTrust Advisory
Category: Legal Services, Financial Planning
Department: Executive
Location: London, UK
Amount: 1534.76
Card: Global Expansion Strategy
Trip Name: unknown
- source_sentence: |
Name : ComplyTech Solutions
Category: Regulatory Software, Consultancy Services
Department: Compliance
Location: Brussels, Belgium
Amount: 1095.45
Card: Regulatory Compliance Optimization Plan
Trip Name: unknown
sentences:
- |
Name : TechXperts Global
Category: IT Services, Consulting
Department: IT Operations
Location: Berlin, Germany
Amount: 987.49
Card: Quarterly System Assessment
Trip Name: unknown
- |
Name : Optix Global
Category: Digital Storage Solutions, Office Essentials Provider
Department: All Departments
Location: Tokyo, Japan
Amount: 568.77
Card: Monthly Office Needs
Trip Name: unknown
- |
Name : Gandalf
Category: Financial Services, Consulting
Department: Finance
Location: Singapore
Amount: 457.29
Card: Financial Advisory Services
Trip Name: unknown
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
results:
- task:
type: triplet
name: Triplet
dataset:
name: bge base en train
type: bge-base-en-train
metrics:
- type: cosine_accuracy
value: 0.8076923076923077
name: Cosine Accuracy
- type: dot_accuracy
value: 0.19230769230769232
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8076923076923077
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8076923076923077
name: Euclidean Accuracy
- type: max_accuracy
value: 0.8076923076923077
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: bge base en eval
type: bge-base-en-eval
metrics:
- type: cosine_accuracy
value: 0.9848484848484849
name: Cosine Accuracy
- type: dot_accuracy
value: 0.015151515151515152
name: Dot Accuracy
- type: manhattan_accuracy
value: 1
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9848484848484849
name: Euclidean Accuracy
- type: max_accuracy
value: 1
name: Max Accuracy
SentenceTransformer based on BAAI/bge-base-en
This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("labdmitriy/finetuned-bge-base-en")
# Run inference
sentences = [
'\nName : ComplyTech Solutions\nCategory: Regulatory Software, Consultancy Services\nDepartment: Compliance\nLocation: Brussels, Belgium\nAmount: 1095.45\nCard: Regulatory Compliance Optimization Plan\nTrip Name: unknown\n',
'\nName : Gandalf\nCategory: Financial Services, Consulting\nDepartment: Finance\nLocation: Singapore\nAmount: 457.29\nCard: Financial Advisory Services\nTrip Name: unknown\n',
'\nName : TechXperts Global\nCategory: IT Services, Consulting\nDepartment: IT Operations\nLocation: Berlin, Germany\nAmount: 987.49\nCard: Quarterly System Assessment\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
bge-base-en-train
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8077 |
dot_accuracy | 0.1923 |
manhattan_accuracy | 0.8077 |
euclidean_accuracy | 0.8077 |
max_accuracy | 0.8077 |
Triplet
- Dataset:
bge-base-en-eval
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9848 |
dot_accuracy | 0.0152 |
manhattan_accuracy | 1.0 |
euclidean_accuracy | 0.9848 |
max_accuracy | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 208 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 208 samples:
sentence label type string int details - min: 33 tokens
- mean: 39.62 tokens
- max: 49 tokens
- 0: ~3.37%
- 1: ~3.85%
- 2: ~3.85%
- 3: ~3.37%
- 4: ~6.25%
- 5: ~4.81%
- 6: ~3.85%
- 7: ~3.37%
- 8: ~4.33%
- 9: ~3.85%
- 10: ~2.40%
- 11: ~1.92%
- 12: ~3.37%
- 13: ~3.85%
- 14: ~2.88%
- 15: ~2.40%
- 16: ~5.29%
- 17: ~5.77%
- 18: ~5.29%
- 19: ~4.33%
- 20: ~1.92%
- 21: ~4.81%
- 22: ~2.40%
- 23: ~2.40%
- 24: ~2.88%
- 25: ~4.33%
- 26: ~2.88%
- Samples:
sentence label
Name : FTC
Category: Regulatory Compliance Services, Business Consulting
Department: Legal
Location: Toronto, Canada
Amount: 3594.76
Card: Annual Compliance Assessment
Trip Name: unknown0
Name : IntelliSync Integration
Category: Connectivity Services, Enterprise Solutions
Department: IT Operations
Location: San Francisco, CA
Amount: 1387.42
Card: Global Connectivity Suite
Trip Name: unknown1
Name : Omachi Meitetsu
Category: Transportation Services, Travel Services
Department: Sales
Location: Hakkuba Japan
Amount: 120.0
Card: Quarterly Travel Expenses
Trip Name: unknown2
- Loss:
BatchSemiHardTripletLoss
Evaluation Dataset
Unnamed Dataset
- Size: 52 evaluation samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 52 samples:
sentence label type string int details - min: 32 tokens
- mean: 39.12 tokens
- max: 46 tokens
- 0: ~3.85%
- 1: ~1.92%
- 2: ~9.62%
- 3: ~5.77%
- 4: ~3.85%
- 5: ~3.85%
- 7: ~3.85%
- 8: ~3.85%
- 9: ~3.85%
- 10: ~3.85%
- 11: ~3.85%
- 12: ~7.69%
- 13: ~7.69%
- 14: ~1.92%
- 15: ~3.85%
- 17: ~1.92%
- 18: ~1.92%
- 19: ~3.85%
- 21: ~1.92%
- 23: ~9.62%
- 24: ~1.92%
- 25: ~1.92%
- 26: ~7.69%
- Samples:
sentence label
Name : NexGen Fiscal Systems
Category: Financial Software Solutions, Revenue Management Services
Department: Finance
Location: San Francisco, CA
Amount: 2749.95
Card: Q4 Revenue Optimization Initiative
Trip Name: unknown15
Name : Midnight Brasserie
Category: Culinary Experience, Event Catering
Department: Marketing
Location: Paris, France
Amount: 456.87
Card: Quarterly Team Building
Trip Name: Summer Collaboration Retreat5
Name : Zero One
Category: Media Production
Department: Marketing
Location: New York, NY
Amount: 7500.0
Card: Sales Operating Budget
Trip Name: unknown13
- Loss:
BatchSemiHardTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
---|---|---|---|
0 | 0 | - | 0.8077 |
5.0 | 65 | 1.0 | - |
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchSemiHardTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}