labdmitriy's picture
Add new SentenceTransformer model.
d039f28 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:208
  - loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
  - source_sentence: |

      Name : SkillAdvance Academy
      Category: Online Learning Platform, Professional Development
      Department: Engineering
      Location: Austin, TX
      Amount: 1875.67
      Card: Continuous Improvement Initiative
      Trip Name: unknown
    sentences:
      - |

        Name : Black Wolf
        Category: Luxury Vehicle Rentals, Corporate Services
        Department: Executive
        Location: Tokyo, Japan
        Amount: 1478.67
        Card: Execute Account
        Trip Name: Tokyo Summit 2023
      - |

        Name : Kreutz & Partners
        Category: Strategic Consulting
        Department: Marketing
        Location: Zurich, Switzerland
        Amount: 982.75
        Card: Digital Growth Strategy
        Trip Name: unknown
      - |

        Name : Nordiska Hosting Collective
        Category: Cloud Storage Solutions, Data Security Services
        Department: IT Operations
        Location: Helsinki, Finland
        Amount: 1439.57
        Card: Annual Data Management Plan
        Trip Name: unknown
  - source_sentence: |

      Name : FusionLink
      Category: Event Management Solutions, Digital Strategy Services
      Department: Sales
      Location: New York, NY
      Amount: 982.75
      Card: Product Launch Activation
      Trip Name: unknown
    sentences:
      - |

        Name : Globetrotter Partners
        Category: Lodging Services, Corporate Retreat Planning
        Department: Executive
        Location: Banff, Canada
        Amount: 1559.75
        Card: Leadership Development Seminar
        Trip Name: unknown
      - |

        Name : SkyHigh Consultancies
        Category: Consulting Services, Business Travel Agencies
        Department: Sales
        Location: Geneva, Switzerland
        Amount: 1349.58
        Card: Strategic Client Meetings
        Trip Name: Global Expansion Initiative
      - |

        Name : Willink Labs
        Category: Consulting Services, Professional Services
        Department: Engineering
        Location: San Francisco, CA
        Amount: 4500.0
        Card: Backend Systems Upgrade Analysis
        Trip Name: unknown
  - source_sentence: |

      Name : RBC
      Category: Transaction Processing, Financial Services
      Department: Finance
      Location: Limassol, Cyprus
      Amount: 843.56
      Card: Quarterly Financial Management
      Trip Name: unknown
    sentences:
      - |

        Name : Kepler Dynamics
        Category: Strategic Consultancy, Tech Solutions
        Department: Finance
        Location: Zurich, Switzerland
        Amount: 2375.88
        Card: Integration Strategy Review
        Trip Name: unknown
      - |

        Name : Global Interconnectivity Corp
        Category: Data Management Services, Network Infrastructure Consultants
        Department: Engineering
        Location: Zurich, Switzerland
        Amount: 1987.54
        Card: Unified Communication Rollout
        Trip Name: unknown
      - |

        Name : TechSupply Inc.
        Category: Electronics Retail, Supply Chain
        Department: Research & Development
        Location: Berlin, Germany
        Amount: 742.45
        Card: New Prototype Equipment
        Trip Name: unknown
  - source_sentence: |

      Name : EcoClean Systems
      Category: Environmental Services, Industrial Equipment Care
      Department: Office Administration
      Location: San Francisco, CA
      Amount: 952.63
      Card: Essential Facility Sustainability
      Trip Name: unknown
    sentences:
      - |

        Name : Wunder
        Category: Advanced Electronics
        Department: Operations
        Location: Munich, Germany
        Amount: 1643.87
        Card: Enterprise Systems Initiative
        Trip Name: Q2-MUC-TechOps
      - |

        Name : Pacific Union Services
        Category: Financial Consulting, Subscription Management
        Department: Finance
        Location: Singapore
        Amount: 129.58
        Card: Quarterly Financial Account Review
        Trip Name: unknown
      - |

        Name : FirmTrust Advisory
        Category: Legal Services, Financial Planning
        Department: Executive
        Location: London, UK
        Amount: 1534.76
        Card: Global Expansion Strategy
        Trip Name: unknown
  - source_sentence: |

      Name : ComplyTech Solutions
      Category: Regulatory Software, Consultancy Services
      Department: Compliance
      Location: Brussels, Belgium
      Amount: 1095.45
      Card: Regulatory Compliance Optimization Plan
      Trip Name: unknown
    sentences:
      - |

        Name : TechXperts Global
        Category: IT Services, Consulting
        Department: IT Operations
        Location: Berlin, Germany
        Amount: 987.49
        Card: Quarterly System Assessment
        Trip Name: unknown
      - |

        Name : Optix Global
        Category: Digital Storage Solutions, Office Essentials Provider
        Department: All Departments
        Location: Tokyo, Japan
        Amount: 568.77
        Card: Monthly Office Needs
        Trip Name: unknown
      - |

        Name : Gandalf
        Category: Financial Services, Consulting
        Department: Finance
        Location: Singapore
        Amount: 457.29
        Card: Financial Advisory Services
        Trip Name: unknown
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - dot_accuracy
  - manhattan_accuracy
  - euclidean_accuracy
  - max_accuracy
model-index:
  - name: SentenceTransformer based on BAAI/bge-base-en
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: bge base en train
          type: bge-base-en-train
        metrics:
          - type: cosine_accuracy
            value: 0.8076923076923077
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.19230769230769232
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0.8076923076923077
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.8076923076923077
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0.8076923076923077
            name: Max Accuracy
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: bge base en eval
          type: bge-base-en-eval
        metrics:
          - type: cosine_accuracy
            value: 0.9848484848484849
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.015151515151515152
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 1
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.9848484848484849
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 1
            name: Max Accuracy

SentenceTransformer based on BAAI/bge-base-en

This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("labdmitriy/finetuned-bge-base-en")
# Run inference
sentences = [
    '\nName : ComplyTech Solutions\nCategory: Regulatory Software, Consultancy Services\nDepartment: Compliance\nLocation: Brussels, Belgium\nAmount: 1095.45\nCard: Regulatory Compliance Optimization Plan\nTrip Name: unknown\n',
    '\nName : Gandalf\nCategory: Financial Services, Consulting\nDepartment: Finance\nLocation: Singapore\nAmount: 457.29\nCard: Financial Advisory Services\nTrip Name: unknown\n',
    '\nName : TechXperts Global\nCategory: IT Services, Consulting\nDepartment: IT Operations\nLocation: Berlin, Germany\nAmount: 987.49\nCard: Quarterly System Assessment\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.8077
dot_accuracy 0.1923
manhattan_accuracy 0.8077
euclidean_accuracy 0.8077
max_accuracy 0.8077

Triplet

Metric Value
cosine_accuracy 0.9848
dot_accuracy 0.0152
manhattan_accuracy 1.0
euclidean_accuracy 0.9848
max_accuracy 1.0

Training Details

Training Dataset

Unnamed Dataset

  • Size: 208 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 208 samples:
    sentence label
    type string int
    details
    • min: 33 tokens
    • mean: 39.62 tokens
    • max: 49 tokens
    • 0: ~3.37%
    • 1: ~3.85%
    • 2: ~3.85%
    • 3: ~3.37%
    • 4: ~6.25%
    • 5: ~4.81%
    • 6: ~3.85%
    • 7: ~3.37%
    • 8: ~4.33%
    • 9: ~3.85%
    • 10: ~2.40%
    • 11: ~1.92%
    • 12: ~3.37%
    • 13: ~3.85%
    • 14: ~2.88%
    • 15: ~2.40%
    • 16: ~5.29%
    • 17: ~5.77%
    • 18: ~5.29%
    • 19: ~4.33%
    • 20: ~1.92%
    • 21: ~4.81%
    • 22: ~2.40%
    • 23: ~2.40%
    • 24: ~2.88%
    • 25: ~4.33%
    • 26: ~2.88%
  • Samples:
    sentence label

    Name : FTC
    Category: Regulatory Compliance Services, Business Consulting
    Department: Legal
    Location: Toronto, Canada
    Amount: 3594.76
    Card: Annual Compliance Assessment
    Trip Name: unknown
    0

    Name : IntelliSync Integration
    Category: Connectivity Services, Enterprise Solutions
    Department: IT Operations
    Location: San Francisco, CA
    Amount: 1387.42
    Card: Global Connectivity Suite
    Trip Name: unknown
    1

    Name : Omachi Meitetsu
    Category: Transportation Services, Travel Services
    Department: Sales
    Location: Hakkuba Japan
    Amount: 120.0
    Card: Quarterly Travel Expenses
    Trip Name: unknown
    2
  • Loss: BatchSemiHardTripletLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 52 evaluation samples
  • Columns: sentence and label
  • Approximate statistics based on the first 52 samples:
    sentence label
    type string int
    details
    • min: 32 tokens
    • mean: 39.12 tokens
    • max: 46 tokens
    • 0: ~3.85%
    • 1: ~1.92%
    • 2: ~9.62%
    • 3: ~5.77%
    • 4: ~3.85%
    • 5: ~3.85%
    • 7: ~3.85%
    • 8: ~3.85%
    • 9: ~3.85%
    • 10: ~3.85%
    • 11: ~3.85%
    • 12: ~7.69%
    • 13: ~7.69%
    • 14: ~1.92%
    • 15: ~3.85%
    • 17: ~1.92%
    • 18: ~1.92%
    • 19: ~3.85%
    • 21: ~1.92%
    • 23: ~9.62%
    • 24: ~1.92%
    • 25: ~1.92%
    • 26: ~7.69%
  • Samples:
    sentence label

    Name : NexGen Fiscal Systems
    Category: Financial Software Solutions, Revenue Management Services
    Department: Finance
    Location: San Francisco, CA
    Amount: 2749.95
    Card: Q4 Revenue Optimization Initiative
    Trip Name: unknown
    15

    Name : Midnight Brasserie
    Category: Culinary Experience, Event Catering
    Department: Marketing
    Location: Paris, France
    Amount: 456.87
    Card: Quarterly Team Building
    Trip Name: Summer Collaboration Retreat
    5

    Name : Zero One
    Category: Media Production
    Department: Marketing
    Location: New York, NY
    Amount: 7500.0
    Card: Sales Operating Budget
    Trip Name: unknown
    13
  • Loss: BatchSemiHardTripletLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step bge-base-en-eval_max_accuracy bge-base-en-train_max_accuracy
0 0 - 0.8077
5.0 65 1.0 -

Framework Versions

  • Python: 3.12.8
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

BatchSemiHardTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}