Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: databricks/dolly-v2-3b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d4ad1f4ec6a1fae0_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d4ad1f4ec6a1fae0_train_data.json
  type:
    field_instruction: Patient
    field_output: Description
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: kokovova/28cfc357-be2e-4eb7-87e6-ede5f44cf913
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 79GiB
max_steps: 30
micro_batch_size: 4
mlflow_experiment_name: /tmp/d4ad1f4ec6a1fae0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6874924e-0eae-4909-b19a-0c7087adfd79
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6874924e-0eae-4909-b19a-0c7087adfd79
warmup_steps: 5
weight_decay: 0.001
xformers_attention: true

28cfc357-be2e-4eb7-87e6-ede5f44cf913

This model is a fine-tuned version of databricks/dolly-v2-3b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 3.7270
13.4442 0.0003 5 3.4392
12.3538 0.0007 10 3.1945
11.8357 0.0010 15 3.1070
11.9725 0.0013 20 3.0723
12.3078 0.0016 25 3.0603
12.0133 0.0020 30 3.0565

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for kokovova/28cfc357-be2e-4eb7-87e6-ede5f44cf913

Adapter
(239)
this model