Upload evaluation script
#3
by
Ihor
- opened
- st_eval.py +341 -0
st_eval.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union, Literal
|
2 |
+
from tqdm import tqdm
|
3 |
+
import numpy as np
|
4 |
+
import os, csv
|
5 |
+
from sentence_transformers.cross_encoder.evaluation import CrossEncoderNanoBEIREvaluator, CrossEncoderRerankingEvaluator
|
6 |
+
from sentence_transformers.util import is_datasets_available
|
7 |
+
|
8 |
+
from gliclass import ZeroShotClassificationPipeline, ZeroShotClassificationWithLabelsChunkingPipeline
|
9 |
+
|
10 |
+
import logging
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
DatasetNameType = Literal[
|
14 |
+
"climatefever",
|
15 |
+
"dbpedia",
|
16 |
+
"fever",
|
17 |
+
"fiqa2018",
|
18 |
+
"hotpotqa",
|
19 |
+
"msmarco",
|
20 |
+
"nfcorpus",
|
21 |
+
"nq",
|
22 |
+
"quoraretrieval",
|
23 |
+
"scidocs",
|
24 |
+
"arguana",
|
25 |
+
"scifact",
|
26 |
+
"touche2020",
|
27 |
+
]
|
28 |
+
|
29 |
+
dataset_name_to_id = {
|
30 |
+
"climatefever": "sentence-transformers/NanoClimateFEVER-bm25",
|
31 |
+
"dbpedia": "sentence-transformers/NanoDBPedia-bm25",
|
32 |
+
"fever": "sentence-transformers/NanoFEVER-bm25",
|
33 |
+
"fiqa2018": "sentence-transformers/NanoFiQA2018-bm25",
|
34 |
+
"hotpotqa": "sentence-transformers/NanoHotpotQA-bm25",
|
35 |
+
"msmarco": "sentence-transformers/NanoMSMARCO-bm25",
|
36 |
+
"nfcorpus": "sentence-transformers/NanoNFCorpus-bm25",
|
37 |
+
"nq": "sentence-transformers/NanoNQ-bm25",
|
38 |
+
"quoraretrieval": "sentence-transformers/NanoQuoraRetrieval-bm25",
|
39 |
+
"scidocs": "sentence-transformers/NanoSCIDOCS-bm25",
|
40 |
+
"arguana": "sentence-transformers/NanoArguAna-bm25",
|
41 |
+
"scifact": "sentence-transformers/NanoSciFact-bm25",
|
42 |
+
"touche2020": "sentence-transformers/NanoTouche2020-bm25",
|
43 |
+
}
|
44 |
+
|
45 |
+
dataset_name_to_human_readable = {
|
46 |
+
"climatefever": "ClimateFEVER",
|
47 |
+
"dbpedia": "DBPedia",
|
48 |
+
"fever": "FEVER",
|
49 |
+
"fiqa2018": "FiQA2018",
|
50 |
+
"hotpotqa": "HotpotQA",
|
51 |
+
"msmarco": "MSMARCO",
|
52 |
+
"nfcorpus": "NFCorpus",
|
53 |
+
"nq": "NQ",
|
54 |
+
"quoraretrieval": "QuoraRetrieval",
|
55 |
+
"scidocs": "SCIDOCS",
|
56 |
+
"arguana": "ArguAna",
|
57 |
+
"scifact": "SciFact",
|
58 |
+
"touche2020": "Touche2020",
|
59 |
+
}
|
60 |
+
|
61 |
+
class GLiClassRerankingEvaluator(CrossEncoderRerankingEvaluator):
|
62 |
+
def __call__(
|
63 |
+
self, model: Union[ZeroShotClassificationPipeline|ZeroShotClassificationWithLabelsChunkingPipeline], output_path: str = None, epoch: int = -1, steps: int = -1, labels_chunk_size: int = -1
|
64 |
+
) -> dict[str, float]:
|
65 |
+
|
66 |
+
if epoch != -1:
|
67 |
+
if steps == -1:
|
68 |
+
out_txt = f" after epoch {epoch}"
|
69 |
+
else:
|
70 |
+
out_txt = f" in epoch {epoch} after {steps} steps"
|
71 |
+
else:
|
72 |
+
out_txt = ""
|
73 |
+
|
74 |
+
logger.info(f"GLiClassRerankingEvaluator: Evaluating the model on the {self.name} dataset{out_txt}:")
|
75 |
+
|
76 |
+
base_mrr_scores = []
|
77 |
+
base_ndcg_scores = []
|
78 |
+
base_ap_scores = []
|
79 |
+
all_mrr_scores = []
|
80 |
+
all_ndcg_scores = []
|
81 |
+
all_ap_scores = []
|
82 |
+
num_queries = 0
|
83 |
+
num_positives = []
|
84 |
+
num_negatives = []
|
85 |
+
for instance in tqdm(self.samples, desc="Evaluating samples", disable=not self.show_progress_bar, leave=False):
|
86 |
+
if "query" not in instance:
|
87 |
+
raise ValueError("GLiClassRerankingEvaluator requires a 'query' key in each sample.")
|
88 |
+
if "positive" not in instance:
|
89 |
+
raise ValueError("GLiClassRerankingEvaluator requires a 'positive' key in each sample.")
|
90 |
+
if ("negative" in instance and "documents" in instance) or (
|
91 |
+
"negative" not in instance and "documents" not in instance
|
92 |
+
):
|
93 |
+
raise ValueError(
|
94 |
+
"GLiClassRerankingEvaluator requires exactly one of 'negative' and 'documents' in each sample."
|
95 |
+
)
|
96 |
+
|
97 |
+
query = instance["query"]
|
98 |
+
positive = instance["positive"]
|
99 |
+
if isinstance(positive, str):
|
100 |
+
positive = [positive]
|
101 |
+
|
102 |
+
negative = instance.get("negative", None)
|
103 |
+
documents = instance.get("documents", None)
|
104 |
+
|
105 |
+
if documents:
|
106 |
+
base_is_relevant = [int(sample in positive) for sample in documents]
|
107 |
+
if sum(base_is_relevant) == 0:
|
108 |
+
base_mrr, base_ndcg, base_ap = 0, 0, 0
|
109 |
+
else:
|
110 |
+
# If not all positives are in documents, we need to add them at the end
|
111 |
+
base_is_relevant += [1] * (len(positive) - sum(base_is_relevant))
|
112 |
+
base_pred_scores = np.array(range(len(base_is_relevant), 0, -1))
|
113 |
+
base_mrr, base_ndcg, base_ap = self.compute_metrics(base_is_relevant, base_pred_scores)
|
114 |
+
base_mrr_scores.append(base_mrr)
|
115 |
+
base_ndcg_scores.append(base_ndcg)
|
116 |
+
base_ap_scores.append(base_ap)
|
117 |
+
|
118 |
+
if self.always_rerank_positives:
|
119 |
+
docs = positive + [doc for doc in documents if doc not in positive]
|
120 |
+
is_relevant = [1] * len(positive) + [0] * (len(docs) - len(positive))
|
121 |
+
else:
|
122 |
+
docs = documents
|
123 |
+
is_relevant = [int(sample in positive) for sample in documents]
|
124 |
+
else:
|
125 |
+
docs = positive + negative
|
126 |
+
is_relevant = [1] * len(positive) + [0] * len(negative)
|
127 |
+
|
128 |
+
num_queries += 1
|
129 |
+
|
130 |
+
num_positives.append(len(positive))
|
131 |
+
num_negatives.append(len(is_relevant) - sum(is_relevant))
|
132 |
+
|
133 |
+
if sum(is_relevant) == 0:
|
134 |
+
all_mrr_scores.append(0)
|
135 |
+
all_ndcg_scores.append(0)
|
136 |
+
all_ap_scores.append(0)
|
137 |
+
continue
|
138 |
+
|
139 |
+
if labels_chunk_size>0 and isinstance(model, ZeroShotClassificationWithLabelsChunkingPipeline):
|
140 |
+
gliclass_outputs = model(query, docs, threshold=0.0, labels_chunk_size=labels_chunk_size)
|
141 |
+
else:
|
142 |
+
gliclass_outputs = model(query, docs, threshold=0.0)
|
143 |
+
|
144 |
+
pred_scores = np.array([item['score'] for item in gliclass_outputs[0]])
|
145 |
+
# Add the ignored positives at the end
|
146 |
+
if num_ignored_positives := len(is_relevant) - len(pred_scores):
|
147 |
+
pred_scores = np.concatenate([pred_scores, np.zeros(num_ignored_positives)])
|
148 |
+
|
149 |
+
mrr, ndcg, ap = self.compute_metrics(is_relevant, pred_scores)
|
150 |
+
|
151 |
+
all_mrr_scores.append(mrr)
|
152 |
+
all_ndcg_scores.append(ndcg)
|
153 |
+
all_ap_scores.append(ap)
|
154 |
+
|
155 |
+
mean_mrr = np.mean(all_mrr_scores)
|
156 |
+
mean_ndcg = np.mean(all_ndcg_scores)
|
157 |
+
mean_ap = np.mean(all_ap_scores)
|
158 |
+
metrics = {
|
159 |
+
"map": mean_ap,
|
160 |
+
f"mrr@{self.at_k}": mean_mrr,
|
161 |
+
f"ndcg@{self.at_k}": mean_ndcg,
|
162 |
+
}
|
163 |
+
|
164 |
+
logger.info(
|
165 |
+
f"Queries: {num_queries}\t"
|
166 |
+
f"Positives: Min {np.min(num_positives):.1f}, Mean {np.mean(num_positives):.1f}, Max {np.max(num_positives):.1f}\t"
|
167 |
+
f"Negatives: Min {np.min(num_negatives):.1f}, Mean {np.mean(num_negatives):.1f}, Max {np.max(num_negatives):.1f}"
|
168 |
+
)
|
169 |
+
if documents:
|
170 |
+
mean_base_mrr = np.mean(base_mrr_scores)
|
171 |
+
mean_base_ndcg = np.mean(base_ndcg_scores)
|
172 |
+
mean_base_ap = np.mean(base_ap_scores)
|
173 |
+
base_metrics = {
|
174 |
+
"base_map": mean_base_ap,
|
175 |
+
f"base_mrr@{self.at_k}": mean_base_mrr,
|
176 |
+
f"base_ndcg@{self.at_k}": mean_base_ndcg,
|
177 |
+
}
|
178 |
+
logger.info(f"{' ' * len(str(self.at_k))} Base -> Reranked")
|
179 |
+
logger.info(f"MAP:{' ' * len(str(self.at_k))} {mean_base_ap * 100:.2f} -> {mean_ap * 100:.2f}")
|
180 |
+
logger.info(f"MRR@{self.at_k}: {mean_base_mrr * 100:.2f} -> {mean_mrr * 100:.2f}")
|
181 |
+
logger.info(f"NDCG@{self.at_k}: {mean_base_ndcg * 100:.2f} -> {mean_ndcg * 100:.2f}")
|
182 |
+
|
183 |
+
model_card_metrics = {
|
184 |
+
"map": f"{mean_ap:.4f} ({mean_ap - mean_base_ap:+.4f})",
|
185 |
+
f"mrr@{self.at_k}": f"{mean_mrr:.4f} ({mean_mrr - mean_base_mrr:+.4f})",
|
186 |
+
f"ndcg@{self.at_k}": f"{mean_ndcg:.4f} ({mean_ndcg - mean_base_ndcg:+.4f})",
|
187 |
+
}
|
188 |
+
model_card_metrics = self.prefix_name_to_metrics(model_card_metrics, self.name)
|
189 |
+
|
190 |
+
metrics.update(base_metrics)
|
191 |
+
metrics = self.prefix_name_to_metrics(metrics, self.name)
|
192 |
+
else:
|
193 |
+
logger.info(f"MAP:{' ' * len(str(self.at_k))} {mean_ap * 100:.2f}")
|
194 |
+
logger.info(f"MRR@{self.at_k}: {mean_mrr * 100:.2f}")
|
195 |
+
logger.info(f"NDCG@{self.at_k}: {mean_ndcg * 100:.2f}")
|
196 |
+
|
197 |
+
metrics = self.prefix_name_to_metrics(metrics, self.name)
|
198 |
+
self.store_metrics_in_model_card_data(model, metrics, epoch, steps)
|
199 |
+
|
200 |
+
if output_path is not None and self.write_csv:
|
201 |
+
csv_path = os.path.join(output_path, self.csv_file)
|
202 |
+
output_file_exists = os.path.isfile(csv_path)
|
203 |
+
with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f:
|
204 |
+
writer = csv.writer(f)
|
205 |
+
if not output_file_exists:
|
206 |
+
writer.writerow(self.csv_headers)
|
207 |
+
|
208 |
+
writer.writerow([epoch, steps, mean_ap, mean_mrr, mean_ndcg])
|
209 |
+
|
210 |
+
return metrics
|
211 |
+
|
212 |
+
class GLiClassNanoBEIREvaluator(CrossEncoderNanoBEIREvaluator):
|
213 |
+
def _load_dataset(self, dataset_name, **ir_evaluator_kwargs) -> CrossEncoderRerankingEvaluator:
|
214 |
+
if not is_datasets_available():
|
215 |
+
raise ValueError(
|
216 |
+
"datasets is not available. Please install it to use the CrossEncoderNanoBEIREvaluator via `pip install datasets`."
|
217 |
+
)
|
218 |
+
from datasets import load_dataset
|
219 |
+
|
220 |
+
dataset_path = dataset_name_to_id[dataset_name.lower()]
|
221 |
+
corpus = load_dataset(dataset_path, "corpus", split="train")
|
222 |
+
corpus_mapping = dict(zip(corpus["_id"], corpus["text"]))
|
223 |
+
queries = load_dataset(dataset_path, "queries", split="train")
|
224 |
+
query_mapping = dict(zip(queries["_id"], queries["text"]))
|
225 |
+
relevance = load_dataset(dataset_path, "relevance", split="train")
|
226 |
+
|
227 |
+
def mapper(sample, corpus_mapping: dict[str, str], query_mapping: dict[str, str], rerank_k: int):
|
228 |
+
query = query_mapping[sample["query-id"]]
|
229 |
+
positives = [corpus_mapping[positive_id] for positive_id in sample["positive-corpus-ids"]]
|
230 |
+
documents = [corpus_mapping[document_id] for document_id in sample["bm25-ranked-ids"][:rerank_k]]
|
231 |
+
return {
|
232 |
+
"query": query,
|
233 |
+
"positive": positives,
|
234 |
+
"documents": documents,
|
235 |
+
}
|
236 |
+
|
237 |
+
relevance = relevance.map(
|
238 |
+
mapper,
|
239 |
+
fn_kwargs={"corpus_mapping": corpus_mapping, "query_mapping": query_mapping, "rerank_k": self.rerank_k},
|
240 |
+
)
|
241 |
+
|
242 |
+
human_readable_name = self._get_human_readable_name(dataset_name)
|
243 |
+
return GLiClassRerankingEvaluator(
|
244 |
+
samples=list(relevance),
|
245 |
+
name=human_readable_name,
|
246 |
+
**ir_evaluator_kwargs,
|
247 |
+
)
|
248 |
+
|
249 |
+
def __call__(
|
250 |
+
self, model: Union[ZeroShotClassificationPipeline|ZeroShotClassificationWithLabelsChunkingPipeline], output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs
|
251 |
+
) -> dict[str, float]:
|
252 |
+
per_metric_results = {}
|
253 |
+
per_dataset_results = {}
|
254 |
+
if epoch != -1:
|
255 |
+
if steps == -1:
|
256 |
+
out_txt = f" after epoch {epoch}"
|
257 |
+
else:
|
258 |
+
out_txt = f" in epoch {epoch} after {steps} steps"
|
259 |
+
else:
|
260 |
+
out_txt = ""
|
261 |
+
logger.info(f"NanoBEIR Evaluation of the model on {self.dataset_names} dataset{out_txt}:")
|
262 |
+
|
263 |
+
for evaluator in tqdm(self.evaluators, desc="Evaluating datasets", disable=not self.show_progress_bar):
|
264 |
+
logger.info(f"Evaluating {evaluator.name}")
|
265 |
+
evaluation = evaluator(model, output_path, epoch, steps)
|
266 |
+
for k in evaluation:
|
267 |
+
dataset, _rerank_k, metric = k.split("_", maxsplit=2)
|
268 |
+
if metric not in per_metric_results:
|
269 |
+
per_metric_results[metric] = []
|
270 |
+
per_dataset_results[f"{dataset}_R{self.rerank_k}_{metric}"] = evaluation[k]
|
271 |
+
per_metric_results[metric].append(evaluation[k])
|
272 |
+
logger.info("")
|
273 |
+
|
274 |
+
agg_results = {}
|
275 |
+
for metric in per_metric_results:
|
276 |
+
agg_results[metric] = self.aggregate_fn(per_metric_results[metric])
|
277 |
+
|
278 |
+
if output_path is not None and self.write_csv:
|
279 |
+
csv_path = os.path.join(output_path, self.csv_file)
|
280 |
+
if not os.path.isfile(csv_path):
|
281 |
+
fOut = open(csv_path, mode="w", encoding="utf-8")
|
282 |
+
fOut.write(",".join(self.csv_headers))
|
283 |
+
fOut.write("\n")
|
284 |
+
|
285 |
+
else:
|
286 |
+
fOut = open(csv_path, mode="a", encoding="utf-8")
|
287 |
+
|
288 |
+
output_data = [
|
289 |
+
epoch,
|
290 |
+
steps,
|
291 |
+
agg_results["map"],
|
292 |
+
agg_results[f"mrr@{self.at_k}"],
|
293 |
+
agg_results[f"ndcg@{self.at_k}"],
|
294 |
+
]
|
295 |
+
|
296 |
+
fOut.write(",".join(map(str, output_data)))
|
297 |
+
fOut.write("\n")
|
298 |
+
fOut.close()
|
299 |
+
|
300 |
+
logger.info("CrossEncoderNanoBEIREvaluator: Aggregated Results:")
|
301 |
+
logger.info(f"{' ' * len(str(self.at_k))} Base -> Reranked")
|
302 |
+
logger.info(
|
303 |
+
f"MAP:{' ' * len(str(self.at_k))} {agg_results['base_map'] * 100:.2f} -> {agg_results['map'] * 100:.2f}"
|
304 |
+
)
|
305 |
+
logger.info(
|
306 |
+
f"MRR@{self.at_k}: {agg_results[f'base_mrr@{self.at_k}'] * 100:.2f} -> {agg_results[f'mrr@{self.at_k}'] * 100:.2f}"
|
307 |
+
)
|
308 |
+
logger.info(
|
309 |
+
f"NDCG@{self.at_k}: {agg_results[f'base_ndcg@{self.at_k}'] * 100:.2f} -> {agg_results[f'ndcg@{self.at_k}'] * 100:.2f}"
|
310 |
+
)
|
311 |
+
|
312 |
+
model_card_metrics = {
|
313 |
+
"map": f"{agg_results['map']:.4f} ({agg_results['map'] - agg_results['base_map']:+.4f})",
|
314 |
+
f"mrr@{self.at_k}": f"{agg_results[f'mrr@{self.at_k}']:.4f} ({agg_results[f'mrr@{self.at_k}'] - agg_results[f'base_mrr@{self.at_k}']:+.4f})",
|
315 |
+
f"ndcg@{self.at_k}": f"{agg_results[f'ndcg@{self.at_k}']:.4f} ({agg_results[f'ndcg@{self.at_k}'] - agg_results[f'base_ndcg@{self.at_k}']:+.4f})",
|
316 |
+
}
|
317 |
+
|
318 |
+
agg_results = self.prefix_name_to_metrics(agg_results, self.name)
|
319 |
+
per_dataset_results.update(agg_results)
|
320 |
+
|
321 |
+
return per_dataset_results
|
322 |
+
|
323 |
+
if __name__ == '__main__':
|
324 |
+
from gliclass import GLiClassModel, ZeroShotClassificationPipeline, ZeroShotClassificationWithLabelsChunkingPipeline
|
325 |
+
from transformers import AutoTokenizer
|
326 |
+
|
327 |
+
chunk_pipeline = True
|
328 |
+
|
329 |
+
model_path = "knowledgator/gliclass-modern-base-v2.0"
|
330 |
+
|
331 |
+
model = GLiClassModel.from_pretrained(model_path)
|
332 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, add_prefix_space=True)
|
333 |
+
if not chunk_pipeline:
|
334 |
+
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0', max_length=8192, progress_bar=False)
|
335 |
+
else:
|
336 |
+
pipeline = ZeroShotClassificationWithLabelsChunkingPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0', max_length=8192, progress_bar=False)
|
337 |
+
|
338 |
+
dataset_names = ["msmarco", "nfcorpus", "nq"]
|
339 |
+
evaluator = GLiClassNanoBEIREvaluator(dataset_names)
|
340 |
+
results = evaluator(pipeline)
|
341 |
+
print(results)
|