|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- MoritzLaurer/synthetic_zeroshot_mixtral_v0.1 |
|
- knowledgator/gliclass-v1.0 |
|
- fancyzhx/amazon_polarity |
|
- cnmoro/QuestionClassification |
|
- Arsive/toxicity_classification_jigsaw |
|
- shishir-dwi/News-Article-Categorization_IAB |
|
- SetFit/qnli |
|
- nyu-mll/multi_nli |
|
- SetFit/student-question-categories |
|
- SetFit/tweet_sentiment_extraction |
|
- SetFit/hate_speech18 |
|
- saattrupdan/doc-nli |
|
|
|
language: |
|
- en |
|
- fr |
|
- ge |
|
metrics: |
|
- f1 |
|
pipeline_tag: zero-shot-classification |
|
tags: |
|
- text classification |
|
- zero-shot |
|
- small language models |
|
- RAG |
|
- sentiment analysis |
|
--- |
|
# ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification |
|
|
|
This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. |
|
|
|
It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. |
|
|
|
The model was trained on synthetic and licensed data that allow commercial use and can be used in commercial applications. |
|
|
|
This version of the model uses a layer-wise selection of features that enables a better understanding of different levels of language. The backbone model is [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large), which effectively processes long sequences. |
|
|
|
### How to use: |
|
First of all, you need to install GLiClass library: |
|
```bash |
|
pip install gliclass |
|
pip install -U transformers>=4.48.0 |
|
``` |
|
|
|
Than you need to initialize a model and a pipeline: |
|
```python |
|
from gliclass import GLiClassModel, ZeroShotClassificationPipeline |
|
from transformers import AutoTokenizer |
|
|
|
model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-large-v2.0-init") |
|
tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-large-v2.0-init") |
|
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') |
|
|
|
text = "One day I will see the world!" |
|
labels = ["travel", "dreams", "sport", "science", "politics"] |
|
results = pipeline(text, labels, threshold=0.5)[0] #because we have one text |
|
for result in results: |
|
print(result["label"], "=>", result["score"]) |
|
``` |
|
|
|
If you want to use it for NLI type of tasks, we recommend representing your premise as a text and hypothesis as a label, you can put several hypotheses, but the model works be |
|
```python |
|
# Initialize model and multi-label pipeline |
|
text = "The cat slept on the windowsill all afternoon" |
|
labels = ["The cat was awake and playing outside."] |
|
results = pipeline(text, labels, threshold=0.0)[0] |
|
print(results) |
|
``` |
|
|
|
### Benchmarks: |
|
Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. |
|
| Model | IMDB | AG_NEWS | Emotions | |
|
|-----------------------------|------|---------|----------| |
|
| [gliclass-modern-large-v2.0-init (399 M)](knowledgator/gliclass-modern-large-v2.0-init) | 0.9137 | 0.7357 | 0.4140 | |
|
| [gliclass-modern-base-v2.0-init (151 M)](knowledgator/gliclass-modern-base-v2.0-init) | 0.8264 | 0.6637 | 0.2985 | |
|
| [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | |
|
| [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | |
|
| [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | |
|
| [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | |
|
| [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | |
|
| [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | |
|
| SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | |
|
|
|
|
|
Below you can find a comparison with other GLiClass models: |
|
|
|
| Dataset | gliclass-base-v1.0-init | gliclass-large-v1.0-init | gliclass-modern-base-v2.0-init | gliclass-modern-large-v2.0-init | |
|
|----------------------|-----------------------|-----------------------|---------------------|---------------------| |
|
| CR | 0.8672 | 0.8024 | 0.9041 | 0.8980 | |
|
| sst2 | 0.8342 | 0.8734 | 0.9011 | 0.9434 | |
|
| sst5 | 0.2048 | 0.1638 | 0.1972 | 0.1123 | |
|
| 20_news_groups | 0.2317 | 0.4151 | 0.2448 | 0.2792 | |
|
| spam | 0.5963 | 0.5407 | 0.5074 | 0.6364 | |
|
| financial_phrasebank | 0.3594 | 0.3705 | 0.2537 | 0.2562 | |
|
| imdb | 0.8772 | 0.8836 | 0.8255 | 0.9137 | |
|
| ag_news | 0.5614 | 0.7069 | 0.6050 | 0.6933 | |
|
| emotion | 0.2865 | 0.3840 | 0.2474 | 0.3746 | |
|
| cap_sotu | 0.3966 | 0.4353 | 0.2929 | 0.2919 | |
|
| rotten_tomatoes | 0.6626 | 0.7933 | 0.6630 | 0.5928 | |
|
| **AVERAGE:** | 0.5344 | 0.5790 | 0.5129 | 0.5447 | |
|
|
|
|
|
Here you can see how the performance of the model grows providing more examples: |
|
| Model | Num Examples | sst5 | ag_news | emotion | **AVERAGE:** | |
|
|------------------------------------|------------------|--------|---------|--------------|----------| |
|
| gliclass-modern-large-v2.0-init | 0 | 0.1123 | 0.6933 | 0.3746 | 0.3934 | |
|
| gliclass-modern-large-v2.0-init | 8 | 0.5098 | 0.8339 | 0.5010 | 0.6149 | |
|
| gliclass-modern-large-v2.0-init | Weak Supervision | 0.0951 | 0.6478 | 0.4520 | 0.3983 | |
|
| gliclass-modern-base-v2.0-init | 0 | 0.1972 | 0.6050 | 0.2474 | 0.3499 | |
|
| gliclass-modern-base-v2.0-init | 8 | 0.3604 | 0.7481 | 0.4420 | 0.5168 | |
|
| gliclass-modern-base-v2.0-init | Weak Supervision | 0.1599 | 0.5713 | 0.3216 | 0.3509 | |
|
| gliclass-large-v1.0-init | 0 | 0.1639 | 0.7069 | 0.3840 | 0.4183 | |
|
| gliclass-large-v1.0-init | 8 | 0.4226 | 0.8415 | 0.4886 | 0.5842 | |
|
| gliclass-large-v1.0-init | Weak Supervision | 0.1689 | 0.7051 | 0.4586 | 0.4442 | |
|
| gliclass-base-v1.0-init | 0 | 0.2048 | 0.5614 | 0.2865 | 0.3509 | |
|
| gliclass-base-v1.0-init | 8 | 0.2007 | 0.8359 | 0.4856 | 0.5074 | |
|
| gliclass-base-v1.0-init | Weak Supervision | 0.0681 | 0.6627 | 0.3066 | 0.3458 | |
|
|