BioMike's picture
Update README.md
280d029 verified
|
raw
history blame
6.63 kB
metadata
license: apache-2.0
datasets:
  - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1
  - knowledgator/gliclass-v1.0
  - fancyzhx/amazon_polarity
  - cnmoro/QuestionClassification
  - Arsive/toxicity_classification_jigsaw
  - shishir-dwi/News-Article-Categorization_IAB
  - SetFit/qnli
  - nyu-mll/multi_nli
  - SetFit/student-question-categories
  - SetFit/tweet_sentiment_extraction
  - SetFit/hate_speech18
  - saattrupdan/doc-nli
language:
  - en
  - fr
  - ge
metrics:
  - f1
pipeline_tag: zero-shot-classification
tags:
  - text classification
  - zero-shot
  - small language models
  - RAG
  - sentiment analysis

⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification

This is an efficient zero-shot classifier inspired by GLiNER work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path.

It can be used for topic classification, sentiment analysis and as a reranker in RAG pipelines.

The model was trained on synthetic and licensed data that allow commercial use and can be used in commercial applications.

This version of the model uses a layer-wise selection of features that enables a better understanding of different levels of language. The backbone model is ModernBERT-large, which effectively processes long sequences.

How to use:

First of all, you need to install GLiClass library:

pip install gliclass
pip install -U transformers>=4.48.0

Than you need to initialize a model and a pipeline:

from gliclass import GLiClassModel, ZeroShotClassificationPipeline
from transformers import AutoTokenizer
model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-large-v2.0-init")
tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-large-v2.0-init")
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0')
text = "One day I will see the world!"
labels = ["travel", "dreams", "sport", "science", "politics"]
results = pipeline(text, labels, threshold=0.5)[0] #because we have one text
for result in results:
 print(result["label"], "=>", result["score"])

Benchmarks:

Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting.

Model IMDB AG_NEWS Emotions
gliclass-modern-large-v2.0-init (399 M) 0.9137 0.7357 0.4140
gliclass-modern-base-v2.0-init (151 M) 0.8264 0.6637 0.2985
gliclass-large-v1.0 (438 M) 0.9404 0.7516 0.4874
gliclass-base-v1.0 (186 M) 0.8650 0.6837 0.4749
gliclass-small-v1.0 (144 M) 0.8650 0.6805 0.4664
Bart-large-mnli (407 M) 0.89 0.6887 0.3765
Deberta-base-v3 (184 M) 0.85 0.6455 0.5095
Comprehendo (184M) 0.90 0.7982 0.5660
SetFit BAAI/bge-small-en-v1.5 (33.4M) 0.86 0.5636 0.5754

Below you can find a comparison with other GLiClass models:

Dataset gliclass-small-v1.0-lw gliclass-base-v1.0-lw gliclass-large-v1.0-lw gliclass-small-v1.0 gliclass-base-v1.0 gliclass-large-v1.0 gliclass-modern-base-v2.0-init gliclass-modern-large-v2.0-init
CR 0.8886 0.9097 0.9226 0.8824 0.8942 0.9219 0.9041 0.8980
sst2 0.8392 0.8987 0.9247 0.8518 0.8979 0.9269 0.9011 0.9434
sst5 0.2865 0.3779 0.2891 0.2424 0.2789 0.3900 0.1972 0.1123
20_news_groups 0.4572 0.3953 0.4083 0.3366 0.3576 0.3863 0.2448 0.2792
spam 0.5118 0.5126 0.3642 0.4089 0.4938 0.3661 0.5074 0.6364
rotten_tomatoes 0.8015 0.8429 0.8807 0.7987 0.8508 0.8808 0.6630 0.5928
financial_phrasebank 0.8665 0.8880 0.9044 0.8901 0.8955 0.8735 0.2537 0.2562
imdb 0.9048 0.9351 0.9429 0.8982 0.9238 0.9333 0.8255 0.9137
ag_news 0.7252 0.6985 0.7559 0.7242 0.6848 0.7503 0.6050 0.6933
dair_emotion 0.4012 0.3516 0.3951 0.3450 0.2357 0.4013 0.2474 0.3746
capsotu 0.3794 0.4643 0.4749 0.3432 0.4375 0.4644 0.2929 0.2919
Average: 0.5732 0.6183 0.6165 0.5401 0.5571 0.6078 0.5129 0.5447