File size: 7,369 Bytes
19dc42b 6e5df2f 96340b1 6e5df2f 96340b1 19dc42b 6e5df2f ae8fb42 6e5df2f ae8fb42 6e5df2f 7368f13 ae8fb42 6e5df2f 280d029 6e5df2f 39db094 19dc42b 7492c7b 96340b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
license: apache-2.0
datasets:
- MoritzLaurer/synthetic_zeroshot_mixtral_v0.1
- knowledgator/gliclass-v1.0
- fancyzhx/amazon_polarity
- cnmoro/QuestionClassification
- Arsive/toxicity_classification_jigsaw
- shishir-dwi/News-Article-Categorization_IAB
- SetFit/qnli
- nyu-mll/multi_nli
- SetFit/student-question-categories
- SetFit/tweet_sentiment_extraction
- SetFit/hate_speech18
- saattrupdan/doc-nli
language:
- en
- fr
- ge
metrics:
- f1
pipeline_tag: zero-shot-classification
tags:
- text classification
- zero-shot
- small language models
- RAG
- sentiment analysis
base_model:
- answerdotai/ModernBERT-large
---
# ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification
This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path.
It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines.
The model was trained on synthetic and licensed data that allow commercial use and can be used in commercial applications.
This version of the model uses a layer-wise selection of features that enables a better understanding of different levels of language. The backbone model is [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large), which effectively processes long sequences.
### How to use:
First of all, you need to install GLiClass library:
```bash
pip install gliclass
pip install -U transformers>=4.48.0
```
Than you need to initialize a model and a pipeline:
```python
from gliclass import GLiClassModel, ZeroShotClassificationPipeline
from transformers import AutoTokenizer
model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-large-v2.0-init")
tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-large-v2.0-init")
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0')
text = "One day I will see the world!"
labels = ["travel", "dreams", "sport", "science", "politics"]
results = pipeline(text, labels, threshold=0.5)[0] #because we have one text
for result in results:
print(result["label"], "=>", result["score"])
```
If you want to use it for NLI type of tasks, we recommend representing your premise as a text and hypothesis as a label, you can put several hypotheses, but the model works best with a single input hypothesis.
```python
# Initialize model and multi-label pipeline
text = "The cat slept on the windowsill all afternoon"
labels = ["The cat was awake and playing outside."]
results = pipeline(text, labels, threshold=0.0)[0]
print(results)
```
### Benchmarks:
Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting.
| Model | IMDB | AG_NEWS | Emotions |
|-----------------------------|------|---------|----------|
| [gliclass-modern-large-v2.0-init (399 M)](knowledgator/gliclass-modern-large-v2.0-init) | 0.9137 | 0.7357 | 0.4140 |
| [gliclass-modern-base-v2.0-init (151 M)](knowledgator/gliclass-modern-base-v2.0-init) | 0.8264 | 0.6637 | 0.2985 |
| [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 |
| [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 |
| [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 |
| [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 |
| [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 |
| [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 |
| SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 |
Below you can find a comparison with other GLiClass models:
| Dataset | gliclass-base-v1.0-init | gliclass-large-v1.0-init | gliclass-modern-base-v2.0-init | gliclass-modern-large-v2.0-init |
|----------------------|-----------------------|-----------------------|---------------------|---------------------|
| CR | 0.8672 | 0.8024 | 0.9041 | 0.8980 |
| sst2 | 0.8342 | 0.8734 | 0.9011 | 0.9434 |
| sst5 | 0.2048 | 0.1638 | 0.1972 | 0.1123 |
| 20_news_groups | 0.2317 | 0.4151 | 0.2448 | 0.2792 |
| spam | 0.5963 | 0.5407 | 0.5074 | 0.6364 |
| financial_phrasebank | 0.3594 | 0.3705 | 0.2537 | 0.2562 |
| imdb | 0.8772 | 0.8836 | 0.8255 | 0.9137 |
| ag_news | 0.5614 | 0.7069 | 0.6050 | 0.6933 |
| emotion | 0.2865 | 0.3840 | 0.2474 | 0.3746 |
| cap_sotu | 0.3966 | 0.4353 | 0.2929 | 0.2919 |
| rotten_tomatoes | 0.6626 | 0.7933 | 0.6630 | 0.5928 |
| **AVERAGE:** | 0.5344 | 0.5790 | 0.5129 | 0.5447 |
Here you can see how the performance of the model grows providing more examples:
| Model | Num Examples | sst5 | ag_news | emotion | **AVERAGE:** |
|------------------------------------|------------------|--------|---------|--------------|----------|
| gliclass-modern-large-v2.0-init | 0 | 0.1123 | 0.6933 | 0.3746 | 0.3934 |
| gliclass-modern-large-v2.0-init | 8 | 0.5098 | 0.8339 | 0.5010 | 0.6149 |
| gliclass-modern-large-v2.0-init | Weak Supervision | 0.0951 | 0.6478 | 0.4520 | 0.3983 |
| gliclass-modern-base-v2.0-init | 0 | 0.1972 | 0.6050 | 0.2474 | 0.3499 |
| gliclass-modern-base-v2.0-init | 8 | 0.3604 | 0.7481 | 0.4420 | 0.5168 |
| gliclass-modern-base-v2.0-init | Weak Supervision | 0.1599 | 0.5713 | 0.3216 | 0.3509 |
| gliclass-large-v1.0-init | 0 | 0.1639 | 0.7069 | 0.3840 | 0.4183 |
| gliclass-large-v1.0-init | 8 | 0.4226 | 0.8415 | 0.4886 | 0.5842 |
| gliclass-large-v1.0-init | Weak Supervision | 0.1689 | 0.7051 | 0.4586 | 0.4442 |
| gliclass-base-v1.0-init | 0 | 0.2048 | 0.5614 | 0.2865 | 0.3509 |
| gliclass-base-v1.0-init | 8 | 0.2007 | 0.8359 | 0.4856 | 0.5074 |
| gliclass-base-v1.0-init | Weak Supervision | 0.0681 | 0.6627 | 0.3066 | 0.3458 | |