BioMike commited on
Commit
6e5df2f
·
verified ·
1 Parent(s): 45c9c51

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -196
README.md CHANGED
@@ -1,199 +1,91 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1
5
+ - knowledgator/gliclass-v1.0
6
+ - fancyzhx/amazon_polarity
7
+ - cnmoro/QuestionClassification
8
+ - Arsive/toxicity_classification_jigsaw
9
+ - shishir-dwi/News-Article-Categorization_IAB
10
+ - SetFit/qnli
11
+ - nyu-mll/multi_nli
12
+ - SetFit/student-question-categories
13
+ - SetFit/tweet_sentiment_extraction
14
+ - SetFit/hate_speech18
15
+ - saattrupdan/doc-nli
16
+
17
+ language:
18
+ - en
19
+ - fr
20
+ - ge
21
+ metrics:
22
+ - f1
23
+ pipeline_tag: zero-shot-classification
24
+ tags:
25
+ - text classification
26
+ - zero-shot
27
+ - small language models
28
+ - RAG
29
+ - sentiment analysis
30
  ---
31
+ # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification
32
+
33
+ This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path.
34
+
35
+ It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines.
36
+
37
+ The model was trained on synthetic and licensed data that allow commercial use and can be used in commercial applications.
38
+
39
+ This version of the model uses a layer-wise selection of features that enables a better understanding of different levels of language. The backbone model is [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large), which effectively processes long sequences.
40
+
41
+ ### How to use:
42
+ First of all, you need to install GLiClass library:
43
+ ```bash
44
+ pip install gliclass
45
+ pip install -U transformers>=4.48.0
46
+ ```
47
+
48
+ Than you need to initialize a model and a pipeline:
49
+ ```python
50
+ from gliclass import GLiClassModel, ZeroShotClassificationPipeline
51
+ from transformers import AutoTokenizer
52
+ model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-large-v2.0-init")
53
+ tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-large-v2.0-init")
54
+ pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0')
55
+ text = "One day I will see the world!"
56
+ labels = ["travel", "dreams", "sport", "science", "politics"]
57
+ results = pipeline(text, labels, threshold=0.5)[0] #because we have one text
58
+ for result in results:
59
+ print(result["label"], "=>", result["score"])
60
+ ```
61
+
62
+ ### Benchmarks:
63
+ Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting.
64
+ | Model | IMDB | AG_NEWS | Emotions |
65
+ |-----------------------------|------|---------|----------|
66
+ | [gliclass-modern-large-v2.0-init (399 M)](knowledgator/gliclass-modern-large-v2.0-init) | 0.9137 | 0.7357 | 0.4140 |
67
+ | [gliclass-modern-base-v2.0-init (151 M)](knowledgator/gliclass-modern-base-v2.0-init) | 0.8264 | 0.6637 | 0.2985 |
68
+ | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 |
69
+ | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 |
70
+ | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 |
71
+ | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 |
72
+ | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 |
73
+ | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 |
74
+ | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 |
75
+ Below you can find a comparison with other GLiClass models:
76
+
77
+ | Dataset | gliclass-small-v1.0-lw | gliclass-base-v1.0-lw | gliclass-large-v1.0-lw | gliclass-small-v1.0 | gliclass-base-v1.0 | gliclass-large-v1.0 | gliclass-modern-base-v2.0-init | gliclass-modern-large-v2.0-init |
78
+ |----------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
79
+ | CR | 0.8886 | 0.9097 | 0.9226 | 0.8824 | 0.8942 | 0.9219 | 0.9041 | 0.8980 |
80
+ | sst2 | 0.8392 | 0.8987 | 0.9247 | 0.8518 | 0.8979 | 0.9269 | 0.9011 | 0.9434 |
81
+ | sst5 | 0.2865 | 0.3779 | 0.2891 | 0.2424 | 0.2789 | 0.3900 | 0.1972 | 0.1123 |
82
+ | 20_news_groups | 0.4572 | 0.3953 | 0.4083 | 0.3366 | 0.3576 | 0.3863 | 0.2448 | 0.2792 |
83
+ | spam | 0.5118 | 0.5126 | 0.3642 | 0.4089 | 0.4938 | 0.3661 | 0.5074 | 0.6364 |
84
+ | rotten_tomatoes | 0.8015 | 0.8429 | 0.8807 | 0.7987 | 0.8508 | 0.8808 | 0.6630 | 0.5928 |
85
+ | financial_phrasebank | 0.8665 | 0.8880 | 0.9044 | 0.8901 | 0.8955 | 0.8735 | 0.2537 | 0.2562 |
86
+ | imdb | 0.9048 | 0.9351 | 0.9429 | 0.8982 | 0.9238 | 0.9333 | 0.8255 | 0.9137 |
87
+ | ag_news | 0.7252 | 0.6985 | 0.7559 | 0.7242 | 0.6848 | 0.7503 | 0.6050 | 0.6933 |
88
+ | dair_emotion | 0.4012 | 0.3516 | 0.3951 | 0.3450 | 0.2357 | 0.4013 | 0.2474 | 0.3746 |
89
+ | capsotu | 0.3794 | 0.4643 | 0.4749 | 0.3432 | 0.4375 | 0.4644 | 0.2929 | 0.2919 |
90
+ | **Average:** | 0.5732 | 0.6183 | 0.6165 | 0.5401 | 0.5571 | 0.6078 | 0.5129 | 0.5447 |
91