import nltk from nltk.sentiment import SentimentIntensityAnalyzer

Download NLTK resources (only need to run once)

nltk.download('vader_lexicon')

Sample text for sentiment analysis

with open("lks.txt", 'r') as file: fl = file.read()

contactId = fl.split("|")[0] transcript=fl.split("|")[1] transcript=transcript.replace("'",'')

Initialize the sentiment analyzer

sia = SentimentIntensityAnalyzer() print(transcript)

Analyze sentiment

sentiment_score = sia.polarity_scores(transcript)

Initialize dictionary to store tone counts

tones = { 'analytical': 0, 'anger': 0, 'confident': 0, 'fear': 0, 'joy': 0, 'sadness': 0, 'tentative': 0 }

Apply thresholds and count tones

if sentiment_score['compound'] >= 0.05: # Threshold for positive sentiment tones['joy'] += 1 elif sentiment_score['compound'] <= -0.05: # Threshold for negative sentiment tones['anger'] += 1 elif sentiment_score['neg'] >= 0.5: # Threshold for high negativity tones['sadness'] += 1 elif sentiment_score['pos'] <= 0.2: # Threshold for low positivity tones['fear'] += 1 elif sentiment_score['neu'] >= 0.5: # Threshold for high neutrality tones['tentative'] += 1 else: # Otherwise, consider it analytical or confident tones['analytical'] += 1 tones['confident'] += 1

Print tone counts

print("Tone Counts:", tones)

sample output

#Tone Counts: {'analytical': 0, 'anger': 0, 'confident': 0, 'fear': 0, 'joy': 1, 'sadness': 0, 'tentative': 0}

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.