SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2
This is a SetFit model trained on the deepset/prompt-injections dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-MiniLM-L3-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-MiniLM-L3-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 2 classes
- Training Dataset: deepset/prompt-injections
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9974 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("kidduts/deberta-v3-prompt-detection-setfit")
# Run inference
preds = model("Broadband expansion rural regions of Germany")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 28.2017 | 783 |
Label | Training Sample Count |
---|---|
0 | 686 |
1 | 806 |
Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.3784 | - |
0.0057 | 50 | 0.3534 | - |
0.0114 | 100 | 0.3237 | - |
0.0171 | 150 | 0.2583 | - |
0.0228 | 200 | 0.221 | - |
0.0285 | 250 | 0.1983 | - |
0.0342 | 300 | 0.1707 | - |
0.0399 | 350 | 0.1348 | - |
0.0456 | 400 | 0.0938 | - |
0.0513 | 450 | 0.0653 | - |
0.0571 | 500 | 0.0405 | - |
0.0628 | 550 | 0.0279 | - |
0.0685 | 600 | 0.0185 | - |
0.0742 | 650 | 0.0127 | - |
0.0799 | 700 | 0.0098 | - |
0.0856 | 750 | 0.0075 | - |
0.0913 | 800 | 0.0055 | - |
0.0970 | 850 | 0.0043 | - |
0.1027 | 900 | 0.0035 | - |
0.1084 | 950 | 0.0029 | - |
0.1141 | 1000 | 0.0025 | - |
0.1198 | 1050 | 0.0021 | - |
0.1255 | 1100 | 0.0019 | - |
0.1312 | 1150 | 0.0016 | - |
0.1369 | 1200 | 0.0014 | - |
0.1426 | 1250 | 0.0012 | - |
0.1483 | 1300 | 0.0012 | - |
0.1540 | 1350 | 0.0011 | - |
0.1597 | 1400 | 0.0009 | - |
0.1654 | 1450 | 0.0009 | - |
0.1712 | 1500 | 0.0008 | - |
0.1769 | 1550 | 0.0007 | - |
0.1826 | 1600 | 0.0007 | - |
0.1883 | 1650 | 0.0006 | - |
0.1940 | 1700 | 0.0006 | - |
0.1997 | 1750 | 0.0006 | - |
0.2054 | 1800 | 0.0005 | - |
0.2111 | 1850 | 0.0005 | - |
0.2168 | 1900 | 0.0004 | - |
0.2225 | 1950 | 0.0004 | - |
0.2282 | 2000 | 0.0004 | - |
0.2339 | 2050 | 0.0004 | - |
0.2396 | 2100 | 0.0003 | - |
0.2453 | 2150 | 0.0003 | - |
0.2510 | 2200 | 0.0003 | - |
0.2567 | 2250 | 0.0003 | - |
0.2624 | 2300 | 0.0003 | - |
0.2681 | 2350 | 0.0003 | - |
0.2738 | 2400 | 0.0003 | - |
0.2796 | 2450 | 0.0003 | - |
0.2853 | 2500 | 0.0002 | - |
0.2910 | 2550 | 0.0002 | - |
0.2967 | 2600 | 0.0002 | - |
0.3024 | 2650 | 0.0002 | - |
0.3081 | 2700 | 0.0002 | - |
0.3138 | 2750 | 0.0002 | - |
0.3195 | 2800 | 0.0002 | - |
0.3252 | 2850 | 0.0002 | - |
0.3309 | 2900 | 0.0002 | - |
0.3366 | 2950 | 0.0002 | - |
0.3423 | 3000 | 0.0002 | - |
0.3480 | 3050 | 0.0002 | - |
0.3537 | 3100 | 0.0001 | - |
0.3594 | 3150 | 0.0001 | - |
0.3651 | 3200 | 0.0001 | - |
0.3708 | 3250 | 0.0001 | - |
0.3765 | 3300 | 0.0001 | - |
0.3822 | 3350 | 0.0001 | - |
0.3880 | 3400 | 0.0001 | - |
0.3937 | 3450 | 0.0001 | - |
0.3994 | 3500 | 0.0001 | - |
0.4051 | 3550 | 0.0001 | - |
0.4108 | 3600 | 0.0001 | - |
0.4165 | 3650 | 0.0001 | - |
0.4222 | 3700 | 0.0001 | - |
0.4279 | 3750 | 0.0001 | - |
0.4336 | 3800 | 0.0001 | - |
0.4393 | 3850 | 0.0001 | - |
0.4450 | 3900 | 0.0001 | - |
0.4507 | 3950 | 0.0001 | - |
0.4564 | 4000 | 0.0001 | - |
0.4621 | 4050 | 0.0001 | - |
0.4678 | 4100 | 0.0001 | - |
0.4735 | 4150 | 0.0001 | - |
0.4792 | 4200 | 0.0001 | - |
0.4849 | 4250 | 0.0001 | - |
0.4906 | 4300 | 0.0001 | - |
0.4963 | 4350 | 0.0001 | - |
0.5021 | 4400 | 0.0001 | - |
0.5078 | 4450 | 0.0001 | - |
0.5135 | 4500 | 0.0001 | - |
0.5192 | 4550 | 0.0001 | - |
0.5249 | 4600 | 0.0001 | - |
0.5306 | 4650 | 0.0001 | - |
0.5363 | 4700 | 0.0001 | - |
0.5420 | 4750 | 0.0001 | - |
0.5477 | 4800 | 0.0001 | - |
0.5534 | 4850 | 0.0001 | - |
0.5591 | 4900 | 0.0001 | - |
0.5648 | 4950 | 0.0001 | - |
0.5705 | 5000 | 0.0001 | - |
0.5762 | 5050 | 0.0001 | - |
0.5819 | 5100 | 0.0001 | - |
0.5876 | 5150 | 0.0001 | - |
0.5933 | 5200 | 0.0001 | - |
0.5990 | 5250 | 0.0001 | - |
0.6047 | 5300 | 0.0001 | - |
0.6105 | 5350 | 0.0001 | - |
0.6162 | 5400 | 0.0 | - |
0.6219 | 5450 | 0.0001 | - |
0.6276 | 5500 | 0.0 | - |
0.6333 | 5550 | 0.0 | - |
0.6390 | 5600 | 0.0 | - |
0.6447 | 5650 | 0.0 | - |
0.6504 | 5700 | 0.0 | - |
0.6561 | 5750 | 0.0 | - |
0.6618 | 5800 | 0.0 | - |
0.6675 | 5850 | 0.0 | - |
0.6732 | 5900 | 0.0 | - |
0.6789 | 5950 | 0.0 | - |
0.6846 | 6000 | 0.0 | - |
0.6903 | 6050 | 0.0 | - |
0.6960 | 6100 | 0.0 | - |
0.7017 | 6150 | 0.0 | - |
0.7074 | 6200 | 0.0 | - |
0.7131 | 6250 | 0.0 | - |
0.7188 | 6300 | 0.0 | - |
0.7246 | 6350 | 0.0 | - |
0.7303 | 6400 | 0.0 | - |
0.7360 | 6450 | 0.0 | - |
0.7417 | 6500 | 0.0 | - |
0.7474 | 6550 | 0.0 | - |
0.7531 | 6600 | 0.0 | - |
0.7588 | 6650 | 0.0 | - |
0.7645 | 6700 | 0.0 | - |
0.7702 | 6750 | 0.0 | - |
0.7759 | 6800 | 0.0 | - |
0.7816 | 6850 | 0.0 | - |
0.7873 | 6900 | 0.0 | - |
0.7930 | 6950 | 0.0 | - |
0.7987 | 7000 | 0.0 | - |
0.8044 | 7050 | 0.0 | - |
0.8101 | 7100 | 0.0 | - |
0.8158 | 7150 | 0.0 | - |
0.8215 | 7200 | 0.0 | - |
0.8272 | 7250 | 0.0 | - |
0.8330 | 7300 | 0.0 | - |
0.8387 | 7350 | 0.0 | - |
0.8444 | 7400 | 0.0 | - |
0.8501 | 7450 | 0.0 | - |
0.8558 | 7500 | 0.0 | - |
0.8615 | 7550 | 0.0 | - |
0.8672 | 7600 | 0.0 | - |
0.8729 | 7650 | 0.0 | - |
0.8786 | 7700 | 0.0 | - |
0.8843 | 7750 | 0.0 | - |
0.8900 | 7800 | 0.0 | - |
0.8957 | 7850 | 0.0 | - |
0.9014 | 7900 | 0.0 | - |
0.9071 | 7950 | 0.0 | - |
0.9128 | 8000 | 0.0 | - |
0.9185 | 8050 | 0.0 | - |
0.9242 | 8100 | 0.0 | - |
0.9299 | 8150 | 0.0 | - |
0.9356 | 8200 | 0.0 | - |
0.9414 | 8250 | 0.0 | - |
0.9471 | 8300 | 0.0 | - |
0.9528 | 8350 | 0.0 | - |
0.9585 | 8400 | 0.0 | - |
0.9642 | 8450 | 0.0 | - |
0.9699 | 8500 | 0.0 | - |
0.9756 | 8550 | 0.0 | - |
0.9813 | 8600 | 0.0 | - |
0.9870 | 8650 | 0.0 | - |
0.9927 | 8700 | 0.0 | - |
0.9984 | 8750 | 0.0 | - |
Framework Versions
- Python: 3.11.11
- SetFit: 1.1.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for kidduts/deberta-v3-prompt-detection-setfit
Dataset used to train kidduts/deberta-v3-prompt-detection-setfit
Evaluation results
- Accuracy on deepset/prompt-injectionstest set self-reported0.997