khushi1234455687's picture
Update README.md
8139042 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: whisper-large-v3-turbo-Hindi-Version2
    results: []
language:
  - hi
pipeline_tag: automatic-speech-recognition

whisper-large-v3-turbo-Hindi-Version2

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2175
  • Wer: 23.1550

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2178 6.7797 2000 0.2245 25.6931
0.1841 13.5593 4000 0.2146 24.6095
0.1572 20.3390 6000 0.2121 23.5845
0.1489 27.1186 8000 0.2120 23.9848
0.1315 33.8983 10000 0.2118 23.6822
0.1253 40.6780 12000 0.2145 22.9793
0.1154 47.4576 14000 0.2154 23.1941
0.1151 54.2373 16000 0.2168 23.0964
0.1079 61.0169 18000 0.2175 23.1550

Framework versions

  • PEFT 0.14.0
  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.20.1