File size: 23,052 Bytes
c26549a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
---
language:
- ko
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:11668
- loss:MultipleNegativesRankingLoss
base_model: klue/bert-base
widget:
- source_sentence: klue-sts-v1_dev_00238
sentences:
- 이것은 7월 15일에 열린 주요 국가의 외무 장관들 간의 첫 번째 회담에 이은 것입니다.
- policy-rtt
- 이는 지난 15일 개최된 제1차 주요국 외교장관간 협의에 뒤이은 것이다.
- source_sentence: klue-sts-v1_dev_00135
sentences:
- 3000만원 이하 소액대출은 지역신용보증재단 심사를 기업은행에 위탁하기로 했다.
- policy-rtt
- 3,000만원 미만의 소규모 대출은 기업은행에 의해 국내 신용보증재단을 검토하도록 의뢰될 것입니다.
- source_sentence: klue-sts-v1_dev_00227
sentences:
- 그 공간은 4인 가족에게는 충분하지 않았습니다.
- 공간은 4명의 성인 가족이 사용하기에 부족함이 없었고.
- airbnb-rtt
- source_sentence: klue-sts-v1_dev_00224
sentences:
- 타이페이 메인 역까지 걸어서 10분 정도 걸립니다.
- 클락키까지 걸어서 10분 정도 걸려요.
- airbnb-sampled
- source_sentence: klue-sts-v1_dev_00159
sentences:
- 거실옆 작은 방에도 싱글 침대가 두개 있습니다.
- 2층에 얇은 벽 하나 사이로 방이 두 개 있습니다.
- airbnb-sampled
datasets:
- klue/klue
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on klue/bert-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/bert-base](https://huggingface.co/klue/bert-base) on the [klue](https://huggingface.co/datasets/klue) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [klue/bert-base](https://huggingface.co/klue/bert-base) <!-- at revision 77c8b3d707df785034b4e50f2da5d37be5f0f546 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [klue](https://huggingface.co/datasets/klue)
- **Language:** ko
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("kgmyh/klue_bert-base_finetuning")
# Run inference
sentences = [
'klue-sts-v1_dev_00159',
'airbnb-sampled',
'2층에 얇은 벽 하나 사이로 방이 두 개 있습니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### klue
* Dataset: [klue](https://huggingface.co/datasets/klue) at [349481e](https://huggingface.co/datasets/klue/tree/349481ec73fff722f88e0453ca05c77a447d967c)
* Size: 11,668 training samples
* Columns: <code>guid</code>, <code>source</code>, <code>sentence1</code>, <code>sentence2</code>, and <code>labels</code>
* Approximate statistics based on the first 1000 samples:
| | guid | source | sentence1 | sentence2 | labels |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------|
| type | string | string | string | string | dict |
| details | <ul><li>min: 17 tokens</li><li>mean: 17.91 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 10.01 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.55 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.35 tokens</li><li>max: 60 tokens</li></ul> | <ul><li></li></ul> |
* Samples:
| guid | source | sentence1 | sentence2 | labels |
|:-------------------------------------|:-----------------------------|:-----------------------------------------------------------|:--------------------------------------------------------|:---------------------------------------------------------------------------------|
| <code>klue-sts-v1_train_00000</code> | <code>airbnb-rtt</code> | <code>숙소 위치는 찾기 쉽고 일반적인 한국의 반지하 숙소입니다.</code> | <code>숙박시설의 위치는 쉽게 찾을 수 있고 한국의 대표적인 반지하 숙박시설입니다.</code> | <code>{'label': 3.7, 'real-label': 3.714285714285714, 'binary-label': 1}</code> |
| <code>klue-sts-v1_train_00001</code> | <code>policy-sampled</code> | <code>위반행위 조사 등을 거부·방해·기피한 자는 500만원 이하 과태료 부과 대상이다.</code> | <code>시민들 스스로 자발적인 예방 노력을 한 것은 아산 뿐만이 아니었다.</code> | <code>{'label': 0.0, 'real-label': 0.0, 'binary-label': 0}</code> |
| <code>klue-sts-v1_train_00002</code> | <code>paraKQC-sampled</code> | <code>회사가 보낸 메일은 이 지메일이 아니라 다른 지메일 계정으로 전달해줘.</code> | <code>사람들이 주로 네이버 메일을 쓰는 이유를 알려줘</code> | <code>{'label': 0.3, 'real-label': 0.3333333333333333, 'binary-label': 0}</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### klue
* Dataset: [klue](https://huggingface.co/datasets/klue) at [349481e](https://huggingface.co/datasets/klue/tree/349481ec73fff722f88e0453ca05c77a447d967c)
* Size: 519 evaluation samples
* Columns: <code>guid</code>, <code>source</code>, <code>sentence1</code>, <code>sentence2</code>, and <code>labels</code>
* Approximate statistics based on the first 519 samples:
| | guid | source | sentence1 | sentence2 | labels |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------|
| type | string | string | string | string | dict |
| details | <ul><li>min: 17 tokens</li><li>mean: 17.82 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 9.72 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.47 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.42 tokens</li><li>max: 58 tokens</li></ul> | <ul><li></li></ul> |
* Samples:
| guid | source | sentence1 | sentence2 | labels |
|:-----------------------------------|:----------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| <code>klue-sts-v1_dev_00000</code> | <code>airbnb-rtt</code> | <code>무엇보다도 호스트분들이 너무 친절하셨습니다.</code> | <code>무엇보다도, 호스트들은 매우 친절했습니다.</code> | <code>{'label': 4.9, 'real-label': 4.857142857142857, 'binary-label': 1}</code> |
| <code>klue-sts-v1_dev_00001</code> | <code>airbnb-sampled</code> | <code>주요 관광지 모두 걸어서 이동가능합니다.</code> | <code>위치는 피렌체 중심가까지 걸어서 이동 가능합니다.</code> | <code>{'label': 1.4, 'real-label': 1.428571428571429, 'binary-label': 0}</code> |
| <code>klue-sts-v1_dev_00002</code> | <code>policy-sampled</code> | <code>학생들의 균형 있는 영어능력을 향상시킬 수 있는 학교 수업을 유도하기 위해 2018학년도 수능부터 도입된 영어 영역 절대평가는 올해도 유지한다.</code> | <code>영어 영역의 경우 학생들이 한글 해석본을 암기하는 문제를 해소하기 위해 2016학년도부터 적용했던 EBS 연계 방식을 올해도 유지한다.</code> | <code>{'label': 1.3, 'real-label': 1.285714285714286, 'binary-label': 0}</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 64
- `weight_decay`: 0.01
- `num_train_epochs`: 1
- `warmup_steps`: 100
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 100
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|:----------:|:-------:|:-------------:|:---------------:|
| 0.0137 | 10 | 2.9128 | - |
| 0.0274 | 20 | 2.8336 | - |
| 0.0411 | 30 | 2.8053 | - |
| 0.0548 | 40 | 2.7919 | - |
| 0.0685 | 50 | 2.7815 | - |
| 0.0822 | 60 | 2.7722 | - |
| 0.0959 | 70 | 2.7779 | - |
| 0.1096 | 80 | 2.7768 | - |
| 0.1233 | 90 | 2.7846 | - |
| 0.1370 | 100 | 2.7747 | - |
| 0.1507 | 110 | 2.7786 | - |
| 0.1644 | 120 | 2.7719 | - |
| 0.1781 | 130 | 2.7745 | - |
| 0.1918 | 140 | 2.7747 | - |
| 0.2055 | 150 | 2.7749 | - |
| 0.2192 | 160 | 2.7715 | - |
| 0.2329 | 170 | 2.7863 | - |
| 0.2466 | 180 | 2.7732 | - |
| 0.2603 | 190 | 2.7744 | - |
| 0.2740 | 200 | 2.7754 | - |
| 0.2877 | 210 | 2.7726 | - |
| 0.3014 | 220 | 2.7718 | - |
| 0.3151 | 230 | 2.774 | - |
| 0.3288 | 240 | 2.7748 | - |
| 0.3425 | 250 | 2.7708 | - |
| 0.3562 | 260 | 2.7728 | - |
| 0.3699 | 270 | 2.7746 | - |
| 0.3836 | 280 | 2.7739 | - |
| 0.3973 | 290 | 2.7721 | - |
| 0.4110 | 300 | 2.7747 | - |
| 0.4247 | 310 | 2.7746 | - |
| 0.4384 | 320 | 2.7732 | - |
| 0.4521 | 330 | 2.7739 | - |
| 0.4658 | 340 | 2.7724 | - |
| 0.4795 | 350 | 2.7736 | - |
| 0.4932 | 360 | 2.7736 | - |
| 0.5068 | 370 | 2.7735 | - |
| 0.5205 | 380 | 2.7734 | - |
| 0.5342 | 390 | 2.7726 | - |
| 0.5479 | 400 | 2.7734 | - |
| 0.5616 | 410 | 2.7726 | - |
| 0.5753 | 420 | 2.7731 | - |
| 0.5890 | 430 | 2.7735 | - |
| 0.6027 | 440 | 2.7734 | - |
| 0.6164 | 450 | 2.7741 | - |
| 0.6301 | 460 | 2.7737 | - |
| 0.6438 | 470 | 2.7717 | - |
| 0.6575 | 480 | 2.7739 | - |
| 0.6712 | 490 | 2.7727 | - |
| **0.6849** | **500** | **2.7729** | **4.129** |
| 0.6986 | 510 | 2.7723 | - |
| 0.7123 | 520 | 2.7729 | - |
| 0.7260 | 530 | 2.7736 | - |
| 0.7397 | 540 | 2.7725 | - |
| 0.7534 | 550 | 2.7735 | - |
| 0.7671 | 560 | 2.7737 | - |
| 0.7808 | 570 | 2.7731 | - |
| 0.7945 | 580 | 2.7733 | - |
| 0.8082 | 590 | 2.7725 | - |
| 0.8219 | 600 | 2.773 | - |
| 0.8356 | 610 | 2.7729 | - |
| 0.8493 | 620 | 2.7724 | - |
| 0.8630 | 630 | 2.7719 | - |
| 0.8767 | 640 | 2.7719 | - |
| 0.8904 | 650 | 2.7735 | - |
| 0.9041 | 660 | 2.7731 | - |
| 0.9178 | 670 | 2.7716 | - |
| 0.9315 | 680 | 2.7736 | - |
| 0.9452 | 690 | 2.7734 | - |
| 0.9589 | 700 | 2.7728 | - |
| 0.9726 | 710 | 2.7721 | - |
| 0.9863 | 720 | 2.7726 | - |
| 1.0 | 730 | 2.6339 | - |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.12.7
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cpu
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |