kgmyh commited on
Commit
c26549a
·
verified ·
1 Parent(s): a43e807

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ko
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:11668
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: klue/bert-base
12
+ widget:
13
+ - source_sentence: klue-sts-v1_dev_00238
14
+ sentences:
15
+ - 이것은 7월 15일에 열린 주요 국가의 외무 장관들 간의 첫 번째 회담에 이은 것입니다.
16
+ - policy-rtt
17
+ - 이는 지난 15일 개최된 제1차 주요국 외교장관간 협의에 뒤이은 것이다.
18
+ - source_sentence: klue-sts-v1_dev_00135
19
+ sentences:
20
+ - 3000만원 이하 소액대출은 지역신용보증재단 심사를 기업은행에 위탁하기로 했다.
21
+ - policy-rtt
22
+ - 3,000만원 미만의 소규모 대출은 기업은행에 의해 국내 신용보증재단을 검토하도록 의뢰될 것입니다.
23
+ - source_sentence: klue-sts-v1_dev_00227
24
+ sentences:
25
+ - 그 공간은 4인 가족에게는 충분하지 않았습니다.
26
+ - 공간은 4명의 성인 가족이 사용하기에 부족함이 없었고.
27
+ - airbnb-rtt
28
+ - source_sentence: klue-sts-v1_dev_00224
29
+ sentences:
30
+ - 타이페이 메인 역까지 걸어서 10분 정도 걸립니다.
31
+ - 클락키까지 걸어서 10분 정도 걸려요.
32
+ - airbnb-sampled
33
+ - source_sentence: klue-sts-v1_dev_00159
34
+ sentences:
35
+ - 거실옆 작은 방에도 싱글 침대가 두개 있습니다.
36
+ - 2층에 얇은 벽 하나 사이로 방이 두 개 있습니다.
37
+ - airbnb-sampled
38
+ datasets:
39
+ - klue/klue
40
+ pipeline_tag: sentence-similarity
41
+ library_name: sentence-transformers
42
+ ---
43
+
44
+ # SentenceTransformer based on klue/bert-base
45
+
46
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/bert-base](https://huggingface.co/klue/bert-base) on the [klue](https://huggingface.co/datasets/klue) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** Sentence Transformer
52
+ - **Base model:** [klue/bert-base](https://huggingface.co/klue/bert-base) <!-- at revision 77c8b3d707df785034b4e50f2da5d37be5f0f546 -->
53
+ - **Maximum Sequence Length:** 512 tokens
54
+ - **Output Dimensionality:** 768 dimensions
55
+ - **Similarity Function:** Cosine Similarity
56
+ - **Training Dataset:**
57
+ - [klue](https://huggingface.co/datasets/klue)
58
+ - **Language:** ko
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
64
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
65
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
66
+
67
+ ### Full Model Architecture
68
+
69
+ ```
70
+ SentenceTransformer(
71
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
72
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
73
+ )
74
+ ```
75
+
76
+ ## Usage
77
+
78
+ ### Direct Usage (Sentence Transformers)
79
+
80
+ First install the Sentence Transformers library:
81
+
82
+ ```bash
83
+ pip install -U sentence-transformers
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+ ```python
88
+ from sentence_transformers import SentenceTransformer
89
+
90
+ # Download from the 🤗 Hub
91
+ model = SentenceTransformer("kgmyh/klue_bert-base_finetuning")
92
+ # Run inference
93
+ sentences = [
94
+ 'klue-sts-v1_dev_00159',
95
+ 'airbnb-sampled',
96
+ '2층에 얇은 벽 하나 사이로 방이 두 개 있습니다.',
97
+ ]
98
+ embeddings = model.encode(sentences)
99
+ print(embeddings.shape)
100
+ # [3, 768]
101
+
102
+ # Get the similarity scores for the embeddings
103
+ similarities = model.similarity(embeddings, embeddings)
104
+ print(similarities.shape)
105
+ # [3, 3]
106
+ ```
107
+
108
+ <!--
109
+ ### Direct Usage (Transformers)
110
+
111
+ <details><summary>Click to see the direct usage in Transformers</summary>
112
+
113
+ </details>
114
+ -->
115
+
116
+ <!--
117
+ ### Downstream Usage (Sentence Transformers)
118
+
119
+ You can finetune this model on your own dataset.
120
+
121
+ <details><summary>Click to expand</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Out-of-Scope Use
128
+
129
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
130
+ -->
131
+
132
+ <!--
133
+ ## Bias, Risks and Limitations
134
+
135
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
136
+ -->
137
+
138
+ <!--
139
+ ### Recommendations
140
+
141
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
142
+ -->
143
+
144
+ ## Training Details
145
+
146
+ ### Training Dataset
147
+
148
+ #### klue
149
+
150
+ * Dataset: [klue](https://huggingface.co/datasets/klue) at [349481e](https://huggingface.co/datasets/klue/tree/349481ec73fff722f88e0453ca05c77a447d967c)
151
+ * Size: 11,668 training samples
152
+ * Columns: <code>guid</code>, <code>source</code>, <code>sentence1</code>, <code>sentence2</code>, and <code>labels</code>
153
+ * Approximate statistics based on the first 1000 samples:
154
+ | | guid | source | sentence1 | sentence2 | labels |
155
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------|
156
+ | type | string | string | string | string | dict |
157
+ | details | <ul><li>min: 17 tokens</li><li>mean: 17.91 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 10.01 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.55 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.35 tokens</li><li>max: 60 tokens</li></ul> | <ul><li></li></ul> |
158
+ * Samples:
159
+ | guid | source | sentence1 | sentence2 | labels |
160
+ |:-------------------------------------|:-----------------------------|:-----------------------------------------------------------|:--------------------------------------------------------|:---------------------------------------------------------------------------------|
161
+ | <code>klue-sts-v1_train_00000</code> | <code>airbnb-rtt</code> | <code>숙소 위치는 찾기 쉽고 일반적인 한국의 반지하 숙소입니다.</code> | <code>숙박시설의 위치는 쉽게 찾을 수 있고 한국의 대표적인 반지하 숙박시설입니다.</code> | <code>{'label': 3.7, 'real-label': 3.714285714285714, 'binary-label': 1}</code> |
162
+ | <code>klue-sts-v1_train_00001</code> | <code>policy-sampled</code> | <code>위반행위 조사 등을 거부·방해·기피한 자는 500만원 이하 과태료 부과 대상이다.</code> | <code>시민들 스스로 자발적인 예방 노력을 한 것은 아산 뿐만이 아니었다.</code> | <code>{'label': 0.0, 'real-label': 0.0, 'binary-label': 0}</code> |
163
+ | <code>klue-sts-v1_train_00002</code> | <code>paraKQC-sampled</code> | <code>회사가 보낸 메일은 이 지메일이 아니라 다른 지메일 계정으로 전달해줘.</code> | <code>사람들이 주로 네이버 메일을 쓰는 이유를 알려줘</code> | <code>{'label': 0.3, 'real-label': 0.3333333333333333, 'binary-label': 0}</code> |
164
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
165
+ ```json
166
+ {
167
+ "scale": 20.0,
168
+ "similarity_fct": "cos_sim"
169
+ }
170
+ ```
171
+
172
+ ### Evaluation Dataset
173
+
174
+ #### klue
175
+
176
+ * Dataset: [klue](https://huggingface.co/datasets/klue) at [349481e](https://huggingface.co/datasets/klue/tree/349481ec73fff722f88e0453ca05c77a447d967c)
177
+ * Size: 519 evaluation samples
178
+ * Columns: <code>guid</code>, <code>source</code>, <code>sentence1</code>, <code>sentence2</code>, and <code>labels</code>
179
+ * Approximate statistics based on the first 519 samples:
180
+ | | guid | source | sentence1 | sentence2 | labels |
181
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------|
182
+ | type | string | string | string | string | dict |
183
+ | details | <ul><li>min: 17 tokens</li><li>mean: 17.82 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 9.72 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.47 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.42 tokens</li><li>max: 58 tokens</li></ul> | <ul><li></li></ul> |
184
+ * Samples:
185
+ | guid | source | sentence1 | sentence2 | labels |
186
+ |:-----------------------------------|:----------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
187
+ | <code>klue-sts-v1_dev_00000</code> | <code>airbnb-rtt</code> | <code>무엇보다도 호스트분들이 너무 친절하셨습니다.</code> | <code>무엇보다도, 호스트들은 매우 친절했습니다.</code> | <code>{'label': 4.9, 'real-label': 4.857142857142857, 'binary-label': 1}</code> |
188
+ | <code>klue-sts-v1_dev_00001</code> | <code>airbnb-sampled</code> | <code>주요 관광지 모두 걸어서 이동가능합니다.</code> | <code>위치는 피렌체 중심가까지 걸어서 이동 가능합니다.</code> | <code>{'label': 1.4, 'real-label': 1.428571428571429, 'binary-label': 0}</code> |
189
+ | <code>klue-sts-v1_dev_00002</code> | <code>policy-sampled</code> | <code>학생들의 균형 있는 영어능력을 향상시킬 수 있는 학교 수업을 유도하기 위해 2018학년도 수능부터 도입된 영어 영역 절대평가는 올해도 유지한다.</code> | <code>영어 영역의 경우 학생들이 한글 해석본을 암기하는 문제를 해소하기 위해 2016학년도부터 적용했던 EBS 연계 방식을 올해도 유지한다.</code> | <code>{'label': 1.3, 'real-label': 1.285714285714286, 'binary-label': 0}</code> |
190
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
191
+ ```json
192
+ {
193
+ "scale": 20.0,
194
+ "similarity_fct": "cos_sim"
195
+ }
196
+ ```
197
+
198
+ ### Training Hyperparameters
199
+ #### Non-Default Hyperparameters
200
+
201
+ - `eval_strategy`: steps
202
+ - `per_device_train_batch_size`: 16
203
+ - `per_device_eval_batch_size`: 64
204
+ - `weight_decay`: 0.01
205
+ - `num_train_epochs`: 1
206
+ - `warmup_steps`: 100
207
+ - `load_best_model_at_end`: True
208
+
209
+ #### All Hyperparameters
210
+ <details><summary>Click to expand</summary>
211
+
212
+ - `overwrite_output_dir`: False
213
+ - `do_predict`: False
214
+ - `eval_strategy`: steps
215
+ - `prediction_loss_only`: True
216
+ - `per_device_train_batch_size`: 16
217
+ - `per_device_eval_batch_size`: 64
218
+ - `per_gpu_train_batch_size`: None
219
+ - `per_gpu_eval_batch_size`: None
220
+ - `gradient_accumulation_steps`: 1
221
+ - `eval_accumulation_steps`: None
222
+ - `torch_empty_cache_steps`: None
223
+ - `learning_rate`: 5e-05
224
+ - `weight_decay`: 0.01
225
+ - `adam_beta1`: 0.9
226
+ - `adam_beta2`: 0.999
227
+ - `adam_epsilon`: 1e-08
228
+ - `max_grad_norm`: 1.0
229
+ - `num_train_epochs`: 1
230
+ - `max_steps`: -1
231
+ - `lr_scheduler_type`: linear
232
+ - `lr_scheduler_kwargs`: {}
233
+ - `warmup_ratio`: 0.0
234
+ - `warmup_steps`: 100
235
+ - `log_level`: passive
236
+ - `log_level_replica`: warning
237
+ - `log_on_each_node`: True
238
+ - `logging_nan_inf_filter`: True
239
+ - `save_safetensors`: True
240
+ - `save_on_each_node`: False
241
+ - `save_only_model`: False
242
+ - `restore_callback_states_from_checkpoint`: False
243
+ - `no_cuda`: False
244
+ - `use_cpu`: False
245
+ - `use_mps_device`: False
246
+ - `seed`: 42
247
+ - `data_seed`: None
248
+ - `jit_mode_eval`: False
249
+ - `use_ipex`: False
250
+ - `bf16`: False
251
+ - `fp16`: False
252
+ - `fp16_opt_level`: O1
253
+ - `half_precision_backend`: auto
254
+ - `bf16_full_eval`: False
255
+ - `fp16_full_eval`: False
256
+ - `tf32`: None
257
+ - `local_rank`: 0
258
+ - `ddp_backend`: None
259
+ - `tpu_num_cores`: None
260
+ - `tpu_metrics_debug`: False
261
+ - `debug`: []
262
+ - `dataloader_drop_last`: False
263
+ - `dataloader_num_workers`: 0
264
+ - `dataloader_prefetch_factor`: None
265
+ - `past_index`: -1
266
+ - `disable_tqdm`: False
267
+ - `remove_unused_columns`: True
268
+ - `label_names`: None
269
+ - `load_best_model_at_end`: True
270
+ - `ignore_data_skip`: False
271
+ - `fsdp`: []
272
+ - `fsdp_min_num_params`: 0
273
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
274
+ - `fsdp_transformer_layer_cls_to_wrap`: None
275
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
276
+ - `deepspeed`: None
277
+ - `label_smoothing_factor`: 0.0
278
+ - `optim`: adamw_torch
279
+ - `optim_args`: None
280
+ - `adafactor`: False
281
+ - `group_by_length`: False
282
+ - `length_column_name`: length
283
+ - `ddp_find_unused_parameters`: None
284
+ - `ddp_bucket_cap_mb`: None
285
+ - `ddp_broadcast_buffers`: False
286
+ - `dataloader_pin_memory`: True
287
+ - `dataloader_persistent_workers`: False
288
+ - `skip_memory_metrics`: True
289
+ - `use_legacy_prediction_loop`: False
290
+ - `push_to_hub`: False
291
+ - `resume_from_checkpoint`: None
292
+ - `hub_model_id`: None
293
+ - `hub_strategy`: every_save
294
+ - `hub_private_repo`: None
295
+ - `hub_always_push`: False
296
+ - `gradient_checkpointing`: False
297
+ - `gradient_checkpointing_kwargs`: None
298
+ - `include_inputs_for_metrics`: False
299
+ - `include_for_metrics`: []
300
+ - `eval_do_concat_batches`: True
301
+ - `fp16_backend`: auto
302
+ - `push_to_hub_model_id`: None
303
+ - `push_to_hub_organization`: None
304
+ - `mp_parameters`:
305
+ - `auto_find_batch_size`: False
306
+ - `full_determinism`: False
307
+ - `torchdynamo`: None
308
+ - `ray_scope`: last
309
+ - `ddp_timeout`: 1800
310
+ - `torch_compile`: False
311
+ - `torch_compile_backend`: None
312
+ - `torch_compile_mode`: None
313
+ - `dispatch_batches`: None
314
+ - `split_batches`: None
315
+ - `include_tokens_per_second`: False
316
+ - `include_num_input_tokens_seen`: False
317
+ - `neftune_noise_alpha`: None
318
+ - `optim_target_modules`: None
319
+ - `batch_eval_metrics`: False
320
+ - `eval_on_start`: False
321
+ - `use_liger_kernel`: False
322
+ - `eval_use_gather_object`: False
323
+ - `average_tokens_across_devices`: False
324
+ - `prompts`: None
325
+ - `batch_sampler`: batch_sampler
326
+ - `multi_dataset_batch_sampler`: proportional
327
+
328
+ </details>
329
+
330
+ ### Training Logs
331
+ | Epoch | Step | Training Loss | Validation Loss |
332
+ |:----------:|:-------:|:-------------:|:---------------:|
333
+ | 0.0137 | 10 | 2.9128 | - |
334
+ | 0.0274 | 20 | 2.8336 | - |
335
+ | 0.0411 | 30 | 2.8053 | - |
336
+ | 0.0548 | 40 | 2.7919 | - |
337
+ | 0.0685 | 50 | 2.7815 | - |
338
+ | 0.0822 | 60 | 2.7722 | - |
339
+ | 0.0959 | 70 | 2.7779 | - |
340
+ | 0.1096 | 80 | 2.7768 | - |
341
+ | 0.1233 | 90 | 2.7846 | - |
342
+ | 0.1370 | 100 | 2.7747 | - |
343
+ | 0.1507 | 110 | 2.7786 | - |
344
+ | 0.1644 | 120 | 2.7719 | - |
345
+ | 0.1781 | 130 | 2.7745 | - |
346
+ | 0.1918 | 140 | 2.7747 | - |
347
+ | 0.2055 | 150 | 2.7749 | - |
348
+ | 0.2192 | 160 | 2.7715 | - |
349
+ | 0.2329 | 170 | 2.7863 | - |
350
+ | 0.2466 | 180 | 2.7732 | - |
351
+ | 0.2603 | 190 | 2.7744 | - |
352
+ | 0.2740 | 200 | 2.7754 | - |
353
+ | 0.2877 | 210 | 2.7726 | - |
354
+ | 0.3014 | 220 | 2.7718 | - |
355
+ | 0.3151 | 230 | 2.774 | - |
356
+ | 0.3288 | 240 | 2.7748 | - |
357
+ | 0.3425 | 250 | 2.7708 | - |
358
+ | 0.3562 | 260 | 2.7728 | - |
359
+ | 0.3699 | 270 | 2.7746 | - |
360
+ | 0.3836 | 280 | 2.7739 | - |
361
+ | 0.3973 | 290 | 2.7721 | - |
362
+ | 0.4110 | 300 | 2.7747 | - |
363
+ | 0.4247 | 310 | 2.7746 | - |
364
+ | 0.4384 | 320 | 2.7732 | - |
365
+ | 0.4521 | 330 | 2.7739 | - |
366
+ | 0.4658 | 340 | 2.7724 | - |
367
+ | 0.4795 | 350 | 2.7736 | - |
368
+ | 0.4932 | 360 | 2.7736 | - |
369
+ | 0.5068 | 370 | 2.7735 | - |
370
+ | 0.5205 | 380 | 2.7734 | - |
371
+ | 0.5342 | 390 | 2.7726 | - |
372
+ | 0.5479 | 400 | 2.7734 | - |
373
+ | 0.5616 | 410 | 2.7726 | - |
374
+ | 0.5753 | 420 | 2.7731 | - |
375
+ | 0.5890 | 430 | 2.7735 | - |
376
+ | 0.6027 | 440 | 2.7734 | - |
377
+ | 0.6164 | 450 | 2.7741 | - |
378
+ | 0.6301 | 460 | 2.7737 | - |
379
+ | 0.6438 | 470 | 2.7717 | - |
380
+ | 0.6575 | 480 | 2.7739 | - |
381
+ | 0.6712 | 490 | 2.7727 | - |
382
+ | **0.6849** | **500** | **2.7729** | **4.129** |
383
+ | 0.6986 | 510 | 2.7723 | - |
384
+ | 0.7123 | 520 | 2.7729 | - |
385
+ | 0.7260 | 530 | 2.7736 | - |
386
+ | 0.7397 | 540 | 2.7725 | - |
387
+ | 0.7534 | 550 | 2.7735 | - |
388
+ | 0.7671 | 560 | 2.7737 | - |
389
+ | 0.7808 | 570 | 2.7731 | - |
390
+ | 0.7945 | 580 | 2.7733 | - |
391
+ | 0.8082 | 590 | 2.7725 | - |
392
+ | 0.8219 | 600 | 2.773 | - |
393
+ | 0.8356 | 610 | 2.7729 | - |
394
+ | 0.8493 | 620 | 2.7724 | - |
395
+ | 0.8630 | 630 | 2.7719 | - |
396
+ | 0.8767 | 640 | 2.7719 | - |
397
+ | 0.8904 | 650 | 2.7735 | - |
398
+ | 0.9041 | 660 | 2.7731 | - |
399
+ | 0.9178 | 670 | 2.7716 | - |
400
+ | 0.9315 | 680 | 2.7736 | - |
401
+ | 0.9452 | 690 | 2.7734 | - |
402
+ | 0.9589 | 700 | 2.7728 | - |
403
+ | 0.9726 | 710 | 2.7721 | - |
404
+ | 0.9863 | 720 | 2.7726 | - |
405
+ | 1.0 | 730 | 2.6339 | - |
406
+
407
+ * The bold row denotes the saved checkpoint.
408
+
409
+ ### Framework Versions
410
+ - Python: 3.12.7
411
+ - Sentence Transformers: 3.3.1
412
+ - Transformers: 4.48.0
413
+ - PyTorch: 2.5.1+cpu
414
+ - Accelerate: 1.1.1
415
+ - Datasets: 3.2.0
416
+ - Tokenizers: 0.21.0
417
+
418
+ ## Citation
419
+
420
+ ### BibTeX
421
+
422
+ #### Sentence Transformers
423
+ ```bibtex
424
+ @inproceedings{reimers-2019-sentence-bert,
425
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
426
+ author = "Reimers, Nils and Gurevych, Iryna",
427
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
428
+ month = "11",
429
+ year = "2019",
430
+ publisher = "Association for Computational Linguistics",
431
+ url = "https://arxiv.org/abs/1908.10084",
432
+ }
433
+ ```
434
+
435
+ #### MultipleNegativesRankingLoss
436
+ ```bibtex
437
+ @misc{henderson2017efficient,
438
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
439
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
440
+ year={2017},
441
+ eprint={1705.00652},
442
+ archivePrefix={arXiv},
443
+ primaryClass={cs.CL}
444
+ }
445
+ ```
446
+
447
+ <!--
448
+ ## Glossary
449
+
450
+ *Clearly define terms in order to be accessible across audiences.*
451
+ -->
452
+
453
+ <!--
454
+ ## Model Card Authors
455
+
456
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
457
+ -->
458
+
459
+ <!--
460
+ ## Model Card Contact
461
+
462
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
463
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "klue/bert-base",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32000
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.5.1+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ba3639512bc254089899e0ffefef27b27ed7d53f43aa0af3be034b3b5933a27
3
+ size 442491744
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff