kevinlu4588's picture
Training gradient ascent models and sanity checking car erasure
e225ed6
raw
history blame
15.2 kB
from PIL import Image
import requests
import os, glob
import pandas as pd
import numpy as np
import re
from transformers import CLIPProcessor, CLIPModel
import importlib
import torch
# Make changes to esd_diffusers.py file here
from eta_diffusion import FineTunedModel, StableDiffuser
class ExperimentImageSet:
def __init__(self, stable_diffusion, eta_0_image, attack_images, interference_images = None, prompt: str = None, interference_prompt1 = None, interference_prompt2 = None, seed: int = None):
self.stable_diffusion: np.ndarray = stable_diffusion
self.eta_0_image: np.ndarray = eta_0_image
self.attack_images: np.ndarray = attack_images
self.interference_images: np.ndarray = interference_images
self.target_prompt = prompt
self.seed = seed
self.interference_prompt1 = interference_prompt1
self.interference_prompt2 = interference_prompt2
def erased_gen(target_csv_path, target_model_path, train_method, etas, num_prompts):
# Load the CSV file
target_data = pd.read_csv(target_csv_path)
torch.cuda.empty_cache()
variance_scales = [1.0]
# Placeholder for the total images and experiment sets
total_images = []
total_experiment_sets = []
ct = 0
# Initialize the diffuser and finetuner models
state_dict = torch.load(target_model_path)
diffuser = StableDiffuser(scheduler='DDIM').to('cuda')
finetuner = FineTunedModel(diffuser, train_method=train_method)
finetuner.load_state_dict(state_dict)
# Iterate through the target data
for index, row in target_data.head(num_prompts).iterrows():
prompt = row['prompt']
seed = int(row['evaluation_seed']) # Assuming 'evaluation_seed' contains the seed values
# Base stable diffusion image
stable_diffusion, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
prompt,
n_steps=50,
generator=torch.manual_seed(seed),
eta=0.0,
variance_scale=0.0
)
total_images.append(stable_diffusion)
# Finetuned no attack image
with finetuner:
finetuned_no_attack, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
prompt,
n_steps=50,
generator=torch.manual_seed(seed),
eta=0.0,
variance_scale=0.0
)
total_images.append(finetuned_no_attack)
attack_images = []
for eta in etas:
for variance_scale in variance_scales:
eta_image, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
prompt,
n_steps=50,
generator=torch.manual_seed(seed),
eta=eta,
variance_scale=variance_scale
)
attack_images.append(eta_image)
total_images.extend(attack_images)
# Construct an experiment set with the images
experiment_set = ExperimentImageSet(
stable_diffusion=stable_diffusion,
eta_0_image=finetuned_no_attack,
attack_images=np.array(attack_images),
interference_images=None, # Assuming no interference images in this case
prompt=prompt,
seed=seed,
interference_prompt1 = None,
interference_prompt2 = None
)
total_experiment_sets.append(experiment_set)
ct += 1 + len(etas)
print(f"diffusion-count {ct} for prompt: {prompt}")
# Convert total images to a NumPy array
total_images = np.array(total_images)
# Assuming fixed_images is needed as an array of final images
fixed_images = []
for image in total_images:
fixed_images.append(image[0][49])
# Convert fixed_images to NumPy array
fixed_images = np.array(fixed_images)
print("Image grid shape:", fixed_images.shape)
return fixed_images, total_experiment_sets
from transformers import CLIPModel, CLIPProcessor
import torch
import numpy as np
from transformers import CLIPModel, CLIPProcessor
import torch
import numpy as np
def process_images(model, processor, prompt: str, images: list):
"""Processes images and returns CLIP scores."""
images = np.array(images)
images = images.squeeze()
print(images.shape)
images = [image[49] for image in images]
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True)
outputs = model(**inputs)
return [clip_score.item() for clip_score in outputs.logits_per_image]
def calculate_experiment_scores(experiment, model, processor):
"""Calculates CLIP scores for each image set in the experiment."""
targeted_images = [experiment.stable_diffusion, experiment.eta_0_image]
targeted_images.extend(experiment.attack_images)
clip_scores = process_images(model, processor, experiment.target_prompt, targeted_images)
scores = {
'SD': clip_scores[0], # Stable diffusion image score
'ETA_0': clip_scores[1], # ETA_0 image score
'ATTACK': max(clip_scores[2:]), # Best attack image score
}
if experiment.interference_images:
interference_images = experiment.interference_images
interference_images = np.array(interference_images)
interference_images = interference_images.squeeze()
interference_images = [interference_image[49] for interference_image in interference_images]
inputs = processor(text=[experiment.interference_prompt1], images=interference_images[0], return_tensors="pt", padding=True)
outputs = model(**inputs)
interference_1 = outputs.logits_per_image.item()
inputs = processor(text=[experiment.interference_prompt2], images=interference_images[1], return_tensors="pt", padding=True)
outputs = model(**inputs)
interference_2 = outputs.logits_per_image.item()
scores['INTERFERENCE1'] = interference_1 # Assuming first interference score is used
scores['INTERFERENCE2'] = interference_2 # Assuming first interference score is used
return scores
def get_clip_scores(experiment_sets: list['ExperimentImageSet']):
"""Processes a list of experiments and returns mean CLIP scores."""
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
total_clip_scores = {'SD': 0, 'ETA_0': 0, 'ATTACK': 0, 'INTERFERENCE1': 0, 'INTERFERENCE2' : 0}
experiment_count = len(experiment_sets)
for experiment in experiment_sets:
experiment_scores = calculate_experiment_scores(experiment, model, processor)
for key in total_clip_scores:
total_clip_scores[key] += experiment_scores.get(key, 0)
# Calculate mean scores
mean_clip_scores = {key: score / experiment_count for key, score in total_clip_scores.items()}
return mean_clip_scores
def get_simple_clip_scores(images_list, prompts):
"""
Processes a list of images and prompts and returns the mean CLIP score for each prompt-image pair.
Args:
images_list (list of lists): List of image sets where each sublist contains images for one prompt.
prompts (list of str): List of prompts corresponding to each image set.
Returns:
mean_clip_score (float): Mean CLIP score across all image-prompt pairs.
"""
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
total_score = 0.0
total_images = 0
full_clip_set = []
for images, prompt in zip(images_list, prompts):
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True) # Indentation fixed here
outputs = model(**inputs)
clip_scores = [clip_score.item() for clip_score in outputs.logits_per_image]
full_clip_set.extend(np.round(clip_scores, 2))
# Calculate mean score
return full_clip_set
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
def show_image_grid_with_scores(img_files, subtitles=None, clip_scores=None, num_rows=3, num_cols=4, fig_size=(15, 10)):
"""
Displays a grid of images with subtitles and optional CLIP scores.
Args:
img_files (list of np.ndarray): List of images to display.
subtitles (list of str): List of labels for the images.
clip_scores (list of float): List of CLIP scores for the images.
num_rows (int): Number of rows in the grid.
num_cols (int): Number of columns in the grid.
fig_size (tuple): Size of the figure.
"""
# Create a grid to display the images
fig, axes = plt.subplots(num_rows, num_cols, figsize=fig_size)
if not subtitles and clip_scores:
subtitles = ['SD', 'Finetuned', 'ETA', "ETA", "ETA", 'eta']*(len(clip_scores)//6)
else:
subtitles = ['SD', 'Finetuned', 'ETA', "ETA", "ETA", 'eta']
# Plot each image in the grid row-wise
for i, ax in enumerate(axes.flatten()):
img_index = i # row-major order
if img_index < len(img_files):
img = img_files[img_index]
ax.imshow(img)
# Construct subtitle with label and optional CLIP score
if subtitles and img_index < len(subtitles):
subtitle = subtitles[img_index]
if clip_scores and img_index < len(clip_scores):
subtitle += f" CLIP: {clip_scores[img_index]:.3f}"
ax.set_title(subtitle, fontsize=14)
ax.axis('off') # Turn off axis labels
plt.tight_layout()
plt.show()
# Example usage
# erased_images = [image1, image2, image3, ...] # Replace with actual images
# subtitles = ["Original", "Finetuner no attack", "Eta Attack", ...] # Replace with actual subtitles
# clip_scores = [0.85, 0.92, 0.75, ...] # Replace with actual CLIP scores
# show_image_grid_with_scores(erased_images, subtitles=subtitles, clip_scores=clip_scores, num_rows=2, num_cols=6)
def interference_gen(target_csv_path, interference_path1, interference_path2, target_model_path, train_method, etas, num_prompts):
# Load the target and interference CSV files
target_data = pd.read_csv(target_csv_path)
interference_data1 = pd.read_csv(interference_path1)
interference_data2 = pd.read_csv(interference_path2)
torch.cuda.empty_cache()
variance_scales = [1.0]
# Placeholder for the total images and experiment sets
total_images = []
total_experiment_sets = []
ct = 0
# Initialize the diffuser and finetuner models
state_dict = torch.load(target_model_path)
diffuser = StableDiffuser(scheduler='DDIM').to('cuda')
finetuner = FineTunedModel(diffuser, train_method=train_method)
finetuner.load_state_dict(state_dict)
# Iterate through the target data along with interference data from the other two CSVs
for (index, row), (index1, row1), (index2, row2) in zip(
target_data.head(num_prompts).iterrows(),
interference_data1.head(num_prompts).iterrows(),
interference_data2.head(num_prompts).iterrows()
):
prompt = row['prompt']
seed = int(row['evaluation_seed']) # Assuming 'evaluation_seed' contains the seed values
interference_prompt1 = row1['prompt']
interference_seed1 = int(row1['evaluation_seed'])
interference_prompt2 = row2['prompt']
interference_seed2 = int(row2['evaluation_seed'])
# Base stable diffusion image
stable_diffusion, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
prompt,
n_steps=50,
generator=torch.manual_seed(seed),
eta=0.0,
variance_scale=0.0
)
total_images.append(stable_diffusion)
# Finetuned no attack image
with finetuner:
finetuned_no_attack, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
prompt,
n_steps=50,
generator=torch.manual_seed(seed),
eta=0.0,
variance_scale=0.0
)
total_images.append(finetuned_no_attack)
attack_images = []
for eta in etas:
for variance_scale in variance_scales:
eta_image, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
prompt,
n_steps=50,
generator=torch.manual_seed(seed),
eta=eta,
variance_scale=variance_scale
)
attack_images.append(eta_image)
total_images.extend(attack_images)
# Generate interference images using prompts and seeds from the interference CSVs
interference_image1, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
interference_prompt1,
n_steps=50,
generator=torch.manual_seed(interference_seed1),
eta=0.0, # No attack (eta = 0)
variance_scale=0.0 # No attack variance
)
total_images.append(interference_image1)
interference_image2, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
interference_prompt2,
n_steps=50,
generator=torch.manual_seed(interference_seed2),
eta=0.0, # No attack (eta = 0)
variance_scale=0.0 # No attack variance
)
total_images.append(interference_image2)
# Construct an experiment set with the images, including the interference images
experiment_set = ExperimentImageSet(
stable_diffusion=stable_diffusion,
eta_0_image=finetuned_no_attack,
attack_images=np.array(attack_images),
interference_images=[interference_image1, interference_image2], # Adding interference images
prompt=prompt,
seed=seed,
interference_prompt1=interference_prompt1,
interference_prompt2=interference_prompt2
)
total_experiment_sets.append(experiment_set)
ct += 1 + len(etas)
print(f"diffusion-count {ct} for prompt: {prompt}")
# Convert total images to a NumPy array
total_images = np.array(total_images)
# Assuming fixed_images is needed as an array of final images
fixed_images = []
for image in total_images:
fixed_images.append(image[0][49])
# Convert fixed_images to NumPy array
fixed_images = np.array(fixed_images)
print("Image grid shape:", fixed_images.shape)
return fixed_images, total_experiment_sets