File size: 15,241 Bytes
9985d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from PIL import Image
import requests
import os, glob
import pandas as pd
import numpy as np
import re
from transformers import CLIPProcessor, CLIPModel
import importlib
import torch
# Make changes to esd_diffusers.py file here
from eta_diffusion import FineTunedModel, StableDiffuser

class ExperimentImageSet:
    def __init__(self, stable_diffusion, eta_0_image, attack_images, interference_images = None, prompt: str = None, interference_prompt1 = None, interference_prompt2 = None, seed: int = None):
        self.stable_diffusion: np.ndarray = stable_diffusion
        self.eta_0_image: np.ndarray = eta_0_image
        self.attack_images: np.ndarray = attack_images
        self.interference_images: np.ndarray = interference_images
        self.target_prompt = prompt
        self.seed = seed
        self.interference_prompt1 = interference_prompt1
        self.interference_prompt2 = interference_prompt2

def erased_gen(target_csv_path, target_model_path, train_method, etas, num_prompts):
    # Load the CSV file
    target_data = pd.read_csv(target_csv_path)

    torch.cuda.empty_cache()
    variance_scales = [1.0]

    # Placeholder for the total images and experiment sets
    total_images = []
    total_experiment_sets = []
    ct = 0

    # Initialize the diffuser and finetuner models
    state_dict = torch.load(target_model_path)
    diffuser = StableDiffuser(scheduler='DDIM').to('cuda')
    finetuner = FineTunedModel(diffuser, train_method=train_method)
    finetuner.load_state_dict(state_dict)

    # Iterate through the target data
    for index, row in target_data.head(num_prompts).iterrows():
        prompt = row['prompt']
        seed = int(row['evaluation_seed'])  # Assuming 'evaluation_seed' contains the seed values
        
        # Base stable diffusion image
        stable_diffusion, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
            prompt, 
            n_steps=50, 
            generator=torch.manual_seed(seed), 
            eta=0.0, 
            variance_scale=0.0
        )
        total_images.append(stable_diffusion)

        # Finetuned no attack image
        with finetuner:
            finetuned_no_attack, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
                prompt, 
                n_steps=50, 
                generator=torch.manual_seed(seed), 
                eta=0.0, 
                variance_scale=0.0
            )
            total_images.append(finetuned_no_attack)

            attack_images = []
            for eta in etas:
                for variance_scale in variance_scales:
                    eta_image, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
                        prompt, 
                        n_steps=50, 
                        generator=torch.manual_seed(seed), 
                        eta=eta, 
                        variance_scale=variance_scale
                    )
                    attack_images.append(eta_image)
            total_images.extend(attack_images)

            # Construct an experiment set with the images
            experiment_set = ExperimentImageSet(
                stable_diffusion=stable_diffusion,
                eta_0_image=finetuned_no_attack,
                attack_images=np.array(attack_images),
                interference_images=None,  # Assuming no interference images in this case
                prompt=prompt,
                seed=seed,
                interference_prompt1 = None,
                interference_prompt2 = None
            )
            total_experiment_sets.append(experiment_set)

            ct += 1 + len(etas)
            print(f"diffusion-count {ct} for prompt: {prompt}")

    # Convert total images to a NumPy array
    total_images = np.array(total_images)

    # Assuming fixed_images is needed as an array of final images
    fixed_images = []
    for image in total_images:
        fixed_images.append(image[0][49])

    # Convert fixed_images to NumPy array
    fixed_images = np.array(fixed_images)

    print("Image grid shape:", fixed_images.shape)

    return fixed_images, total_experiment_sets

    from transformers import CLIPModel, CLIPProcessor
import torch
import numpy as np

from transformers import CLIPModel, CLIPProcessor
import torch
import numpy as np

def process_images(model, processor, prompt: str, images: list):
    """Processes images and returns CLIP scores."""
    images = np.array(images)
    images = images.squeeze()
    print(images.shape)
    images = [image[49] for image in images]
    inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True)
    outputs = model(**inputs)
    return [clip_score.item() for clip_score in outputs.logits_per_image]

def calculate_experiment_scores(experiment, model, processor):
    """Calculates CLIP scores for each image set in the experiment."""
    targeted_images = [experiment.stable_diffusion, experiment.eta_0_image]
    targeted_images.extend(experiment.attack_images)
    clip_scores = process_images(model, processor, experiment.target_prompt, targeted_images)
    
    scores = {
        'SD': clip_scores[0],  # Stable diffusion image score
        'ETA_0': clip_scores[1],  # ETA_0 image score
        'ATTACK': max(clip_scores[2:]),  # Best attack image score
    }

    if experiment.interference_images:
        interference_images = experiment.interference_images
        interference_images = np.array(interference_images)
        interference_images = interference_images.squeeze()
        interference_images = [interference_image[49] for interference_image in interference_images]
        inputs = processor(text=[experiment.interference_prompt1], images=interference_images[0], return_tensors="pt", padding=True)
        outputs =  model(**inputs)
        interference_1 = outputs.logits_per_image.item()
        
        inputs = processor(text=[experiment.interference_prompt2], images=interference_images[1], return_tensors="pt", padding=True)
        outputs =  model(**inputs)
        interference_2 = outputs.logits_per_image.item()
        scores['INTERFERENCE1'] = interference_1  # Assuming first interference score is used
        scores['INTERFERENCE2'] = interference_2  # Assuming first interference score is used

    return scores

def get_clip_scores(experiment_sets: list['ExperimentImageSet']):
    """Processes a list of experiments and returns mean CLIP scores."""
    model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
    processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

    total_clip_scores = {'SD': 0, 'ETA_0': 0, 'ATTACK': 0, 'INTERFERENCE1': 0, 'INTERFERENCE2' : 0}
    experiment_count = len(experiment_sets)

    for experiment in experiment_sets:
        experiment_scores = calculate_experiment_scores(experiment, model, processor)
        for key in total_clip_scores:
            total_clip_scores[key] += experiment_scores.get(key, 0)

    # Calculate mean scores
    mean_clip_scores = {key: score / experiment_count for key, score in total_clip_scores.items()}
    return mean_clip_scores

def get_simple_clip_scores(images_list, prompts):
    """
    Processes a list of images and prompts and returns the mean CLIP score for each prompt-image pair.

    Args:
        images_list (list of lists): List of image sets where each sublist contains images for one prompt.
        prompts (list of str): List of prompts corresponding to each image set.
    
    Returns:
        mean_clip_score (float): Mean CLIP score across all image-prompt pairs.
    """
    model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
    processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

    total_score = 0.0
    total_images = 0
    full_clip_set = []
    for images, prompt in zip(images_list, prompts):
        inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True)  # Indentation fixed here
        outputs = model(**inputs)
        clip_scores = [clip_score.item() for clip_score in outputs.logits_per_image]
        full_clip_set.extend(np.round(clip_scores, 2))
        
    # Calculate mean score
    return full_clip_set

    import matplotlib.pyplot as plt
import matplotlib.pyplot as plt

def show_image_grid_with_scores(img_files, subtitles=None, clip_scores=None, num_rows=3, num_cols=4, fig_size=(15, 10)):
    """
    Displays a grid of images with subtitles and optional CLIP scores.

    Args:
        img_files (list of np.ndarray): List of images to display.
        subtitles (list of str): List of labels for the images.
        clip_scores (list of float): List of CLIP scores for the images.
        num_rows (int): Number of rows in the grid.
        num_cols (int): Number of columns in the grid.
        fig_size (tuple): Size of the figure.
    """
    # Create a grid to display the images
    fig, axes = plt.subplots(num_rows, num_cols, figsize=fig_size)
    if not subtitles and clip_scores:
        subtitles = ['SD', 'Finetuned', 'ETA', "ETA", "ETA", 'eta']*(len(clip_scores)//6)
    else:
        subtitles = ['SD', 'Finetuned', 'ETA', "ETA", "ETA", 'eta']
    # Plot each image in the grid row-wise
    for i, ax in enumerate(axes.flatten()):
        img_index = i  # row-major order
        if img_index < len(img_files):
            img = img_files[img_index]
            ax.imshow(img)
            
            # Construct subtitle with label and optional CLIP score
            if subtitles and img_index < len(subtitles):
                subtitle = subtitles[img_index]
                if clip_scores and img_index < len(clip_scores):
                    subtitle += f" CLIP: {clip_scores[img_index]:.3f}"
                ax.set_title(subtitle, fontsize=14)
                
        ax.axis('off')  # Turn off axis labels

    plt.tight_layout()
    plt.show()

# Example usage
# erased_images = [image1, image2, image3, ...]  # Replace with actual images
# subtitles = ["Original", "Finetuner no attack", "Eta Attack", ...]  # Replace with actual subtitles
# clip_scores = [0.85, 0.92, 0.75, ...]  # Replace with actual CLIP scores
# show_image_grid_with_scores(erased_images, subtitles=subtitles, clip_scores=clip_scores, num_rows=2, num_cols=6)

def interference_gen(target_csv_path, interference_path1, interference_path2, target_model_path, train_method, etas, num_prompts):
    # Load the target and interference CSV files
    target_data = pd.read_csv(target_csv_path)
    interference_data1 = pd.read_csv(interference_path1)
    interference_data2 = pd.read_csv(interference_path2)

    torch.cuda.empty_cache()
    variance_scales = [1.0]

    # Placeholder for the total images and experiment sets
    total_images = []
    total_experiment_sets = []
    ct = 0

    # Initialize the diffuser and finetuner models
    state_dict = torch.load(target_model_path)
    diffuser = StableDiffuser(scheduler='DDIM').to('cuda')
    finetuner = FineTunedModel(diffuser, train_method=train_method)
    finetuner.load_state_dict(state_dict)

    # Iterate through the target data along with interference data from the other two CSVs
    for (index, row), (index1, row1), (index2, row2) in zip(
            target_data.head(num_prompts).iterrows(),
            interference_data1.head(num_prompts).iterrows(),
            interference_data2.head(num_prompts).iterrows()
        ):

        prompt = row['prompt']
        seed = int(row['evaluation_seed'])  # Assuming 'evaluation_seed' contains the seed values
        
        interference_prompt1 = row1['prompt']
        interference_seed1 = int(row1['evaluation_seed'])
        
        interference_prompt2 = row2['prompt']
        interference_seed2 = int(row2['evaluation_seed'])
        
        # Base stable diffusion image
        stable_diffusion, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
            prompt, 
            n_steps=50, 
            generator=torch.manual_seed(seed), 
            eta=0.0, 
            variance_scale=0.0
        )
        total_images.append(stable_diffusion)

        # Finetuned no attack image
        with finetuner:
            finetuned_no_attack, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
                prompt, 
                n_steps=50, 
                generator=torch.manual_seed(seed), 
                eta=0.0, 
                variance_scale=0.0
            )
            total_images.append(finetuned_no_attack)

            attack_images = []
            for eta in etas:
                for variance_scale in variance_scales:
                    eta_image, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
                        prompt, 
                        n_steps=50, 
                        generator=torch.manual_seed(seed), 
                        eta=eta, 
                        variance_scale=variance_scale
                    )
                    attack_images.append(eta_image)
            total_images.extend(attack_images)

                        # Generate interference images using prompts and seeds from the interference CSVs
            interference_image1, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
                interference_prompt1,
                n_steps=50,
                generator=torch.manual_seed(interference_seed1),
                eta=0.0,  # No attack (eta = 0)
                variance_scale=0.0  # No attack variance
            )
            total_images.append(interference_image1)

            interference_image2, images_steps, decoded_latents, latents, noise_preds, output_steps = diffuser(
                interference_prompt2,
                n_steps=50,
                generator=torch.manual_seed(interference_seed2),
                eta=0.0,  # No attack (eta = 0)
                variance_scale=0.0  # No attack variance
            )
            total_images.append(interference_image2)

            # Construct an experiment set with the images, including the interference images
            experiment_set = ExperimentImageSet(
                stable_diffusion=stable_diffusion,
                eta_0_image=finetuned_no_attack,
                attack_images=np.array(attack_images),
                interference_images=[interference_image1, interference_image2],  # Adding interference images
                prompt=prompt,
                seed=seed,
                interference_prompt1=interference_prompt1,
                interference_prompt2=interference_prompt2
            )
            total_experiment_sets.append(experiment_set)

            ct += 1 + len(etas)
            print(f"diffusion-count {ct} for prompt: {prompt}")

    # Convert total images to a NumPy array
    total_images = np.array(total_images)

    # Assuming fixed_images is needed as an array of final images
    fixed_images = []
    for image in total_images:
        fixed_images.append(image[0][49])

    # Convert fixed_images to NumPy array
    fixed_images = np.array(fixed_images)

    print("Image grid shape:", fixed_images.shape)

    return fixed_images, total_experiment_sets