kenrogers commited on
Commit
22eab01
·
verified ·
1 Parent(s): d19691d

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1536,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": true,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,686 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:84
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Alibaba-NLP/gte-Qwen2-1.5B-instruct
11
+ widget:
12
+ - source_sentence: "1. What advancements in technology are mentioned as contributing\
13
+ \ to faster inference times in applications? \n2. In what scenarios does the\
14
+ \ context suggest that response latency is less of a concern for users?"
15
+ sentences:
16
+ - your take on this yeah I mean so no not better uh it's definitely different it's
17
+ definitely uh you know do it's trying to do a different thing which is dope I
18
+ would say like at the end of the day uh they're they're using the same process
19
+ but they're they're they're finding different ways to uh to take advantage of
20
+ that process uh the recurrent depth is more of an architecture change right it's
21
+ more of a let's actually get this reasoning inherent to the to the model we're
22
+ going to train it to be very good at this recurrent task we're going to train
23
+ it to do this this accordion thing that it does very well right uh versus coconut
24
+ which is like let's adapt and add to existing uh architecture right to to get
25
+ this uh this kind of reasoning flavor that that coconut winds to get or winds
26
+ up getting so it's it's it's a it's the same process two different approaches
27
+ though where they're coming at it from two different angles uh I would say like
28
+ current depth is uh is interesting because it's
29
+ - right we kind of got to go a little bit more into the blackbox we gota go back
30
+ beyond the unknown yeah it happens but it's it's it's it's the the timing is right
31
+ and uh with companies like you know Nvidia with companies the other accelerators
32
+ that are that are coming out they're super good at inference Gro and S all these
33
+ other peeps right uh we're getting real fast at inference and so the spending
34
+ that time you know becomes less and less impactful to the user experience but
35
+ more importantly uh you know we have a lot of applications LMS aren't good for
36
+ yet where we don't care about response latency like research like uh PhD level
37
+ math where it's like it doesn't matter if it takes a day yeah because that means
38
+ it didn't take some some other person a day right like that's the that's the the
39
+ we're at this time the models are capable enough that we can think about problems
40
+ that we can't just do ourselves faster it the whole the whole you know ecosystem
41
+ is set up for this to be the right
42
+ - today that's right that's right so so reasoning is some right now because our
43
+ models are System One machines right this is the this is the they're not reasoners
44
+ they're they're uh they're they're just they they just do they just do they just
45
+ do right uh we need some way to stretch them into this reasoning domain and the
46
+ way that we do that is through some kind of test time computer some kind of test
47
+ time scaling things that you know it's interesting to think about but something
48
+ like an agent right is an example or expression of test time compute right we're
49
+ we're we're using the agent to leverage more compute to do cooler things right
50
+ so these kinds of systems are also test time compute uh very broad definition
51
+ you love agents are also reasoning right that's right agents are reason there
52
+ you go but the idea is that we we need some way to stretch the system one machine
53
+ to a system two machine and the way that we know how to do that right now is is
54
+ through these time compute methods
55
+ - source_sentence: '1. What are the two main approaches being demonstrated in the
56
+ context of reasoning and latent space?
57
+
58
+ 2. How does the new coconut Library fit into the discussion of test time compute
59
+ scaling?'
60
+ sentences:
61
+ - going to be in latent space we're going to be in embedding space we're going to
62
+ be in the space where we can do math and stuff and importantly we can kind of
63
+ think that we're putting in this big old sequence you know especially if you think
64
+ of these long context LMS we're just jamming context in there and then we're popping
65
+ out one to one single token okay so really at the end of the day you can kind
66
+ of think of this as we're kind of doing this compression okay we're taking all
67
+ of this POS possibility space and all this crazy and then we're just like one
68
+ token we just want one so it's kind of interesting to to think off the bat that
69
+ llms in this sense are kind of giant compression algorithms we are condensing
70
+ all of that information into one of Let's just call it 500,000 different tokens
71
+ that we might have there are many different sizes of possible vocabulary but let's
72
+ pick a pick a big number that is on the order of magnitude of something we might
73
+ see hundreds of thousands here down
74
+ - to the most upvoted questions at the end of the sesh if you want to jump in on
75
+ YouTube or on LinkedIn live and throw a comment in live please do during the discussions
76
+ and join us in investigating this really cool new space all right with that let's
77
+ go ahead and hop right into it guys today we're talking about reasoning in continuous
78
+ latent space all right so we want to kind of wrap our head around all of these
79
+ key words and this is a really really cool idea when we can finally start to grock
80
+ it so I hope you guys are feeling as excited about it as I am by the end of the
81
+ session ideally after this hour you spend with us you're going to understand reasoning
82
+ in continuous Laten space including the continuous Chain of Thought or coconut
83
+ and recurrent depth approaches we want to discuss the impact of this kind of approach
84
+ on test time compute scaling some of the working hypotheses and some of the things
85
+ people are interested in in looking out there on the llm edge for as we continue
86
+ to
87
+ - impact of this kind of approach on test time compute scaling some of the working
88
+ hypotheses and some of the things people are interested in in looking out there
89
+ on the llm edge for as we continue to see the field progress I want to demonstrate
90
+ both approaches and check out the new coconut Library as well so how we're going
91
+ to go through this is we're going to essentially introduce this idea of reasoning
92
+ and latent space then we're going to talk about the scaling part of this before
93
+ we dig into the specific approaches and we get the demo on both approaches by
94
+ the end so it should be a lot of fun today let's go ahead and dig in reasoning
95
+ in latent space let's root ourselves first in some definitions when we talk about
96
+ reasoning we're talking about the action of thinking about something and it's
97
+ kind of funny in a logical way if you look up logic it uses the word reason and
98
+ there we are caught in a loop but reasoning is about thinking latent space is
99
+ about using a representation of our
100
+ - source_sentence: '1. What is the main idea behind recurrent depth as described in
101
+ the context?
102
+
103
+ 2. How do the scaling tools mentioned in the context interact with each other?'
104
+ sentences:
105
+ - well it let's go back to our gpt2 style diagram and think about this the input
106
+ embeddings here are where we're essentially looping back to so what we do is we
107
+ kind of loop back before we generate the next token right back to this embedded
108
+ space and and I'm basically GNA run through again before I give you the next token
109
+ I'm going to keep chewing on it I'm going to keep thinking about it and this could
110
+ be you know in gbt2 this was 12 different decoder block Stacks you can imagine
111
+ a lot of different configurations and ways to do this but essentially what are
112
+ we doing we're avoiding that compression by staying in the latent space okay we're
113
+ avoiding that compression because of course when we do the actual prediction of
114
+ the next token you know this is my little Transformer here this is from The Illustrated
115
+ Transformer that also has an encoder and a decoder stack but the point here is
116
+ to look at the next token prediction to realize this is the GPT style decoder
117
+ stack and we are having an
118
+ - it's kind of funny in a logical way if you look up logic it uses the word reason
119
+ and there we are caught in a loop but reasoning is about thinking latent space
120
+ is about using a representation of our data that sort of captures the essential
121
+ features of it we can think of latent space as embedding space or the space of
122
+ math and numbers in other words it's just not the space of words and natural language
123
+ let's think about how this manifests in a Transformer architecture here I'm showing
124
+ a GPT style architecture from the gpt2 paper what we want to think about is we
125
+ want to put a sequence in and we want to get some next token prediction out when
126
+ we put the sequence in we're in the space of natural language when we get the
127
+ next token out we're in the space of natural language betwix in between we're
128
+ going to be in latent space we're going to be in embedding space we're going to
129
+ be in the space where we can do math and stuff and importantly we can kind of
130
+ think that we're putting in this big
131
+ - the thing yeah yeah okay okay so so recurrent depth in short I mean is like you
132
+ think about a single token and then you let the sequence go like that's what I
133
+ thought was interesting and and maybe that's not exactly right but that was my
134
+ understanding yeah I so that's not that's not yet not yet what's happening but
135
+ the idea is that this is complimentary uh so the idea is that we have this these
136
+ these and they call it out in the paper which is why we're bringing it up right
137
+ uh but the the idea is that we have this uh complimentary uh Suite of scaling
138
+ tools that shouldn't interfere with each other right that should allow us to uh
139
+ to to go forward unimpeded and that's and that's the idea right so uh we can marry
140
+ these methods together they're not yet married together right so we we still uh
141
+ we still decode one output right we're not de decoding like a token at a time
142
+ but you could certainly put this in a loop where it's going to think a lot about
143
+ the next stage of thinking right so we
144
+ - source_sentence: '1. What is the significance of having thousands of points in Laden
145
+ space compared to being limited to 500,000 tokens in token space?
146
+
147
+ 2. How does the ability to represent every floating point number in each element
148
+ of the dimension embedding contribute to the expressiveness of the model?'
149
+ sentences:
150
+ - chains of thought and this is where this idea of test time compute came up and
151
+ this was a paper from Google in August last year called scaling test time compute
152
+ you know it's basically taking that scaling paper originally and saying well now
153
+ we have this sort of other axis to scale on and again this is the idea that we're
154
+ anthropomorphizing a little bit but humans tend to think longer on difficult problems
155
+ maybe we should let machines do that and when we think of test time Compu it's
156
+ just time spent thinking you know and so if we we think about kind of how we can
157
+ leverage this we've seen some of these things come out in recent weeks and recent
158
+ months we talked about deep seek R1 just last week and you know this is the same
159
+ idea it thinks before it answers and this is again just sort of the next step
160
+ in the evolution of what we've got going on here and we saw moreover deep seek
161
+ one generates one token at a time it's able to spend more time processing and
162
+ it generates these thinking
163
+ - architecture diagram let's think about how we're still kind of doing this loop
164
+ back we're still doing this reasoning in in space and now let's label the Prelude
165
+ the recurrent block and the Koda we want to think about the recurrent block as
166
+ an entire block or stack this is the useful way to sort of take this to the next
167
+ level and what we want to do is we want to imagine that now we're going to set
168
+ this up so that we're going to put a bunch of recurrent blocks kind of in parallel
169
+ recur to occur again right and we're going to set it up so it looks something
170
+ like this we have a single Prelude we have one recurrent block we have two recurrent
171
+ block we have n recurrent block and then we get a single Koda or output you can
172
+ configure this as whiz will show you in the code many different ways and this
173
+ is the big idea and it's a natural extension sort of depthwise to what we saw
174
+ with coconut so the big idea here is that you don't need to use tokens directly
175
+ same big idea as coconut recurrent
176
+ - across for you and we will go into more detail you know uh throughout the presentation
177
+ today yeah I mean like the big the big idea here right the the the the the the
178
+ big fun thing is that we have uh thousands and thousands and thousands and millions
179
+ right of of of points on the line that we can exist in Laden space whereas we're
180
+ like kind of owned by 500,000 tokens token space Oh uh you know like having having
181
+ every every every floating Point number in every single element of the dimension
182
+ embedding right uh can be expressed in Laden space so even if we only had you
183
+ know like uh 20,000 numbers we could represent per element but we have 4,000 elements
184
+ you do the math big number right so the more than 500,000 more than 500,000 certainly
185
+ right okay okay we scaled it up at that point we've scaled it up we have more
186
+ Nuance right we have like very slightly different as opposed to massively different
187
+ right and this uh this allows us to be more expressive yes we have to get back
188
+ to token
189
+ - source_sentence: "1. What has changed in the time required for inference that allows\
190
+ \ for more progress to be made? \n2. What challenges did participants face during\
191
+ \ the engineering boot camp in early 2024?"
192
+ sentences:
193
+ - and in early 2024 a lot of people were having you know issues with with streaming
194
+ the token out and a lot of people were you know it's like it's like it just becomes
195
+ so much easier to get you want a quick result boom gbt 40 mini or whatever it
196
+ is whatever equivalent of model are so good at those quick results those sort
197
+ of system one results that now we're like okay what if we want to tackle bigger
198
+ Beyond a single task kind of problems like we're seeing with deep research like
199
+ we're seeing with these other things that require it to go chew on some things
200
+ but I want to also just dig in there real quick because you mentioned agents and
201
+ when we think about deep research or some of these types of tools they're actually
202
+ agentic and they're using tools what we're talking about here is we're talking
203
+ about reasoning inside the llm and we're talking about doing engineering within
204
+ the llm and and sort of giving giving the sort of the brain itself instead of
205
+ the application we're not giving the
206
+ - is that we have some idea we have some thoughts that that say well we need to
207
+ keep progress going so what's the next lowest hanging fruit that is accommodated
208
+ by our Hardware uh and that's why it's like well we can just spend more time doing
209
+ inference then right we we can we can do inference so fast now that spending extra
210
+ time in inference isn't uh is feasible you know what would have used to take months
211
+ or or or or at least weeks now can take you know a day or hours and so it makes
212
+ sense you know the the the circumstances have changed uh we're running up against
213
+ a a wall with our tried and true bread and butter methods uh and so now is the
214
+ time for these you know for these kinds of uh leaps of progress yeah yeah and
215
+ I remember you know when we were teaching like the a engineering boot camp and
216
+ in early 2024 a lot of people were having you know issues with with streaming
217
+ the token out and a lot of people were you know it's like it's like it just becomes
218
+ so much easier to get you want
219
+ - we're at this time the models are capable enough that we can think about problems
220
+ that we can't just do ourselves faster it the whole the whole you know ecosystem
221
+ is set up for this to be the right time to push reason oh man okay all right there's
222
+ so many rabbit holes let's avoid them and let's keep it moving thanks whiz for
223
+ your insights on that as as well let's get into coconut guys let's talk about
224
+ how this actually manifests itself again big idea um you know we can start at
225
+ the very high level we can say this is about latent space it's not about language
226
+ space okay this is about and this is exactly what you'll read in the paper you'll
227
+ read language space may not always be optimal for reasoning let's go okay yeah
228
+ we got it and we want to utilize the last hidden state of the llm as a representation
229
+ of the reasoning State when we say hidden state or latent space or embedding space
230
+ or this sort of space of math and computation we're talking about the same space
231
+ of course the the exact
232
+ pipeline_tag: sentence-similarity
233
+ library_name: sentence-transformers
234
+ metrics:
235
+ - cosine_accuracy@1
236
+ - cosine_accuracy@3
237
+ - cosine_accuracy@5
238
+ - cosine_accuracy@10
239
+ - cosine_precision@1
240
+ - cosine_precision@3
241
+ - cosine_precision@5
242
+ - cosine_precision@10
243
+ - cosine_recall@1
244
+ - cosine_recall@3
245
+ - cosine_recall@5
246
+ - cosine_recall@10
247
+ - cosine_ndcg@10
248
+ - cosine_mrr@10
249
+ - cosine_map@100
250
+ model-index:
251
+ - name: SentenceTransformer based on Alibaba-NLP/gte-Qwen2-1.5B-instruct
252
+ results:
253
+ - task:
254
+ type: information-retrieval
255
+ name: Information Retrieval
256
+ dataset:
257
+ name: Unknown
258
+ type: unknown
259
+ metrics:
260
+ - type: cosine_accuracy@1
261
+ value: 0.8333333333333334
262
+ name: Cosine Accuracy@1
263
+ - type: cosine_accuracy@3
264
+ value: 1.0
265
+ name: Cosine Accuracy@3
266
+ - type: cosine_accuracy@5
267
+ value: 1.0
268
+ name: Cosine Accuracy@5
269
+ - type: cosine_accuracy@10
270
+ value: 1.0
271
+ name: Cosine Accuracy@10
272
+ - type: cosine_precision@1
273
+ value: 0.8333333333333334
274
+ name: Cosine Precision@1
275
+ - type: cosine_precision@3
276
+ value: 0.3333333333333333
277
+ name: Cosine Precision@3
278
+ - type: cosine_precision@5
279
+ value: 0.19999999999999998
280
+ name: Cosine Precision@5
281
+ - type: cosine_precision@10
282
+ value: 0.09999999999999999
283
+ name: Cosine Precision@10
284
+ - type: cosine_recall@1
285
+ value: 0.8333333333333334
286
+ name: Cosine Recall@1
287
+ - type: cosine_recall@3
288
+ value: 1.0
289
+ name: Cosine Recall@3
290
+ - type: cosine_recall@5
291
+ value: 1.0
292
+ name: Cosine Recall@5
293
+ - type: cosine_recall@10
294
+ value: 1.0
295
+ name: Cosine Recall@10
296
+ - type: cosine_ndcg@10
297
+ value: 0.9330328858630988
298
+ name: Cosine Ndcg@10
299
+ - type: cosine_mrr@10
300
+ value: 0.9097222222222222
301
+ name: Cosine Mrr@10
302
+ - type: cosine_map@100
303
+ value: 0.9097222222222222
304
+ name: Cosine Map@100
305
+ ---
306
+
307
+ # SentenceTransformer based on Alibaba-NLP/gte-Qwen2-1.5B-instruct
308
+
309
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct). It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
310
+
311
+ ## Model Details
312
+
313
+ ### Model Description
314
+ - **Model Type:** Sentence Transformer
315
+ - **Base model:** [Alibaba-NLP/gte-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) <!-- at revision 0d2ad8e1ac654a2b626e62154778a70868141208 -->
316
+ - **Maximum Sequence Length:** 32768 tokens
317
+ - **Output Dimensionality:** 1536 dimensions
318
+ - **Similarity Function:** Cosine Similarity
319
+ <!-- - **Training Dataset:** Unknown -->
320
+ <!-- - **Language:** Unknown -->
321
+ <!-- - **License:** Unknown -->
322
+
323
+ ### Model Sources
324
+
325
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
326
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
327
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
328
+
329
+ ### Full Model Architecture
330
+
331
+ ```
332
+ SentenceTransformer(
333
+ (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False}) with Transformer model: Qwen2Model
334
+ (1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
335
+ (2): Normalize()
336
+ )
337
+ ```
338
+
339
+ ## Usage
340
+
341
+ ### Direct Usage (Sentence Transformers)
342
+
343
+ First install the Sentence Transformers library:
344
+
345
+ ```bash
346
+ pip install -U sentence-transformers
347
+ ```
348
+
349
+ Then you can load this model and run inference.
350
+ ```python
351
+ from sentence_transformers import SentenceTransformer
352
+
353
+ # Download from the 🤗 Hub
354
+ model = SentenceTransformer("kenrogers/gte-ft-yt")
355
+ # Run inference
356
+ sentences = [
357
+ '1. What has changed in the time required for inference that allows for more progress to be made? \n2. What challenges did participants face during the engineering boot camp in early 2024?',
358
+ "is that we have some idea we have some thoughts that that say well we need to keep progress going so what's the next lowest hanging fruit that is accommodated by our Hardware uh and that's why it's like well we can just spend more time doing inference then right we we can we can do inference so fast now that spending extra time in inference isn't uh is feasible you know what would have used to take months or or or or at least weeks now can take you know a day or hours and so it makes sense you know the the the circumstances have changed uh we're running up against a a wall with our tried and true bread and butter methods uh and so now is the time for these you know for these kinds of uh leaps of progress yeah yeah and I remember you know when we were teaching like the a engineering boot camp and in early 2024 a lot of people were having you know issues with with streaming the token out and a lot of people were you know it's like it's like it just becomes so much easier to get you want",
359
+ "and in early 2024 a lot of people were having you know issues with with streaming the token out and a lot of people were you know it's like it's like it just becomes so much easier to get you want a quick result boom gbt 40 mini or whatever it is whatever equivalent of model are so good at those quick results those sort of system one results that now we're like okay what if we want to tackle bigger Beyond a single task kind of problems like we're seeing with deep research like we're seeing with these other things that require it to go chew on some things but I want to also just dig in there real quick because you mentioned agents and when we think about deep research or some of these types of tools they're actually agentic and they're using tools what we're talking about here is we're talking about reasoning inside the llm and we're talking about doing engineering within the llm and and sort of giving giving the sort of the brain itself instead of the application we're not giving the",
360
+ ]
361
+ embeddings = model.encode(sentences)
362
+ print(embeddings.shape)
363
+ # [3, 1536]
364
+
365
+ # Get the similarity scores for the embeddings
366
+ similarities = model.similarity(embeddings, embeddings)
367
+ print(similarities.shape)
368
+ # [3, 3]
369
+ ```
370
+
371
+ <!--
372
+ ### Direct Usage (Transformers)
373
+
374
+ <details><summary>Click to see the direct usage in Transformers</summary>
375
+
376
+ </details>
377
+ -->
378
+
379
+ <!--
380
+ ### Downstream Usage (Sentence Transformers)
381
+
382
+ You can finetune this model on your own dataset.
383
+
384
+ <details><summary>Click to expand</summary>
385
+
386
+ </details>
387
+ -->
388
+
389
+ <!--
390
+ ### Out-of-Scope Use
391
+
392
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
393
+ -->
394
+
395
+ ## Evaluation
396
+
397
+ ### Metrics
398
+
399
+ #### Information Retrieval
400
+
401
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
402
+
403
+ | Metric | Value |
404
+ |:--------------------|:----------|
405
+ | cosine_accuracy@1 | 0.8333 |
406
+ | cosine_accuracy@3 | 1.0 |
407
+ | cosine_accuracy@5 | 1.0 |
408
+ | cosine_accuracy@10 | 1.0 |
409
+ | cosine_precision@1 | 0.8333 |
410
+ | cosine_precision@3 | 0.3333 |
411
+ | cosine_precision@5 | 0.2 |
412
+ | cosine_precision@10 | 0.1 |
413
+ | cosine_recall@1 | 0.8333 |
414
+ | cosine_recall@3 | 1.0 |
415
+ | cosine_recall@5 | 1.0 |
416
+ | cosine_recall@10 | 1.0 |
417
+ | **cosine_ndcg@10** | **0.933** |
418
+ | cosine_mrr@10 | 0.9097 |
419
+ | cosine_map@100 | 0.9097 |
420
+
421
+ <!--
422
+ ## Bias, Risks and Limitations
423
+
424
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
425
+ -->
426
+
427
+ <!--
428
+ ### Recommendations
429
+
430
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
431
+ -->
432
+
433
+ ## Training Details
434
+
435
+ ### Training Dataset
436
+
437
+ #### Unnamed Dataset
438
+
439
+ * Size: 84 training samples
440
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
441
+ * Approximate statistics based on the first 84 samples:
442
+ | | sentence_0 | sentence_1 |
443
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
444
+ | type | string | string |
445
+ | details | <ul><li>min: 32 tokens</li><li>mean: 41.21 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 180 tokens</li><li>mean: 208.05 tokens</li><li>max: 231 tokens</li></ul> |
446
+ * Samples:
447
+ | sentence_0 | sentence_1 |
448
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
449
+ | <code>1. What are the two big ideas aimed at scaling the power of LLMs during inference mentioned in the context? <br>2. How does the concept of reasoning in latent space relate to the efficiency of computation during inference?</code> | <code>okay whiz we're talking about reasoning in latent space today is that the same as test time compute yeah that's right nice nice okay and we've got two big ideas to cover that are aimed at scaling the power of llms during inference is that right that yeah that's right so we have we have two you know latent space methods uh we have our continuous Chain of Thought or coconut right and then we have our more more directly more uh you know uh budget forcing recurrent depth uh model yes man that's a lot so when we look across both of those there appears to be a pretty simple explanation it's almost like uh you know when we when we're in that sort of thinking space of computation we don't have to do the thinky thinky in words and that's better maybe even it will allow us to find a new scaling axis is that right yeah that's exactly right I mean the idea is that we have this uh you know we we have this way of taking advantage of of uh the most powerful thinking space in the Transformer and not</code> |
450
+ | <code>1. What are the two big ideas aimed at scaling the power of LLMs during inference mentioned in the context? <br>2. How does the concept of reasoning in latent space relate to the efficiency of computation during inference?</code> | <code>okay whiz we're talking about reasoning in latent space today is that the same as test time compute yeah that's right nice nice okay and we've got two big ideas to cover that are aimed at scaling the power of llms during inference is that right that yeah that's right so we have we have two you know latent space methods uh we have our continuous Chain of Thought or coconut right and then we have our more more directly more uh you know uh budget forcing recurrent depth uh model yes man that's a lot so when we look across both of those there appears to be a pretty simple explanation it's almost like uh you know when we when we're in that sort of thinking space of computation we don't have to do the thinky thinky in words and that's better maybe even it will allow us to find a new scaling axis is that right yeah that's exactly right I mean the idea is that we have this uh you know we we have this way of taking advantage of of uh the most powerful thinking space in the Transformer and not</code> |
451
+ | <code>1. What is the significance of staying in the "mind Palace" of the Transformer according to the context?<br>2. What are the main topics that will be covered in the demos mentioned in the context?</code> | <code>is that right yeah that's exactly right I mean the idea is that we have this uh you know we we have this way of taking advantage of of uh the most powerful thinking space in the Transformer and not just like for a second right not automatically resolving back to token space but kind of staying in this very like uh you know in in the mind Palace of the of the Transformer without having to write down the words yes okay okay okay so basically scaling is dead Long Live scaling something like that yeah scaling has died uh we should scale yeah all right all right all right well I'm pumped for the demos today we're going to see some thinking in latent space let's cover all the Concepts we need to get there we'll get you back in for some discussions along the way because this one's pretty meta thanks whiz all right guys we are gonna rock out on large reasoning models today while we were originally going to just cover chain of continuous thought or coconut we saw a paper come out a couple</code> |
452
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
453
+ ```json
454
+ {
455
+ "loss": "MultipleNegativesRankingLoss",
456
+ "matryoshka_dims": [
457
+ 768,
458
+ 512,
459
+ 256,
460
+ 128,
461
+ 64
462
+ ],
463
+ "matryoshka_weights": [
464
+ 1,
465
+ 1,
466
+ 1,
467
+ 1,
468
+ 1
469
+ ],
470
+ "n_dims_per_step": -1
471
+ }
472
+ ```
473
+
474
+ ### Training Hyperparameters
475
+ #### Non-Default Hyperparameters
476
+
477
+ - `eval_strategy`: steps
478
+ - `per_device_train_batch_size`: 10
479
+ - `per_device_eval_batch_size`: 10
480
+ - `num_train_epochs`: 10
481
+ - `multi_dataset_batch_sampler`: round_robin
482
+
483
+ #### All Hyperparameters
484
+ <details><summary>Click to expand</summary>
485
+
486
+ - `overwrite_output_dir`: False
487
+ - `do_predict`: False
488
+ - `eval_strategy`: steps
489
+ - `prediction_loss_only`: True
490
+ - `per_device_train_batch_size`: 10
491
+ - `per_device_eval_batch_size`: 10
492
+ - `per_gpu_train_batch_size`: None
493
+ - `per_gpu_eval_batch_size`: None
494
+ - `gradient_accumulation_steps`: 1
495
+ - `eval_accumulation_steps`: None
496
+ - `torch_empty_cache_steps`: None
497
+ - `learning_rate`: 5e-05
498
+ - `weight_decay`: 0.0
499
+ - `adam_beta1`: 0.9
500
+ - `adam_beta2`: 0.999
501
+ - `adam_epsilon`: 1e-08
502
+ - `max_grad_norm`: 1
503
+ - `num_train_epochs`: 10
504
+ - `max_steps`: -1
505
+ - `lr_scheduler_type`: linear
506
+ - `lr_scheduler_kwargs`: {}
507
+ - `warmup_ratio`: 0.0
508
+ - `warmup_steps`: 0
509
+ - `log_level`: passive
510
+ - `log_level_replica`: warning
511
+ - `log_on_each_node`: True
512
+ - `logging_nan_inf_filter`: True
513
+ - `save_safetensors`: True
514
+ - `save_on_each_node`: False
515
+ - `save_only_model`: False
516
+ - `restore_callback_states_from_checkpoint`: False
517
+ - `no_cuda`: False
518
+ - `use_cpu`: False
519
+ - `use_mps_device`: False
520
+ - `seed`: 42
521
+ - `data_seed`: None
522
+ - `jit_mode_eval`: False
523
+ - `use_ipex`: False
524
+ - `bf16`: False
525
+ - `fp16`: False
526
+ - `fp16_opt_level`: O1
527
+ - `half_precision_backend`: auto
528
+ - `bf16_full_eval`: False
529
+ - `fp16_full_eval`: False
530
+ - `tf32`: None
531
+ - `local_rank`: 0
532
+ - `ddp_backend`: None
533
+ - `tpu_num_cores`: None
534
+ - `tpu_metrics_debug`: False
535
+ - `debug`: []
536
+ - `dataloader_drop_last`: False
537
+ - `dataloader_num_workers`: 0
538
+ - `dataloader_prefetch_factor`: None
539
+ - `past_index`: -1
540
+ - `disable_tqdm`: False
541
+ - `remove_unused_columns`: True
542
+ - `label_names`: None
543
+ - `load_best_model_at_end`: False
544
+ - `ignore_data_skip`: False
545
+ - `fsdp`: []
546
+ - `fsdp_min_num_params`: 0
547
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
548
+ - `fsdp_transformer_layer_cls_to_wrap`: None
549
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
550
+ - `deepspeed`: None
551
+ - `label_smoothing_factor`: 0.0
552
+ - `optim`: adamw_torch
553
+ - `optim_args`: None
554
+ - `adafactor`: False
555
+ - `group_by_length`: False
556
+ - `length_column_name`: length
557
+ - `ddp_find_unused_parameters`: None
558
+ - `ddp_bucket_cap_mb`: None
559
+ - `ddp_broadcast_buffers`: False
560
+ - `dataloader_pin_memory`: True
561
+ - `dataloader_persistent_workers`: False
562
+ - `skip_memory_metrics`: True
563
+ - `use_legacy_prediction_loop`: False
564
+ - `push_to_hub`: False
565
+ - `resume_from_checkpoint`: None
566
+ - `hub_model_id`: None
567
+ - `hub_strategy`: every_save
568
+ - `hub_private_repo`: None
569
+ - `hub_always_push`: False
570
+ - `gradient_checkpointing`: False
571
+ - `gradient_checkpointing_kwargs`: None
572
+ - `include_inputs_for_metrics`: False
573
+ - `include_for_metrics`: []
574
+ - `eval_do_concat_batches`: True
575
+ - `fp16_backend`: auto
576
+ - `push_to_hub_model_id`: None
577
+ - `push_to_hub_organization`: None
578
+ - `mp_parameters`:
579
+ - `auto_find_batch_size`: False
580
+ - `full_determinism`: False
581
+ - `torchdynamo`: None
582
+ - `ray_scope`: last
583
+ - `ddp_timeout`: 1800
584
+ - `torch_compile`: False
585
+ - `torch_compile_backend`: None
586
+ - `torch_compile_mode`: None
587
+ - `dispatch_batches`: None
588
+ - `split_batches`: None
589
+ - `include_tokens_per_second`: False
590
+ - `include_num_input_tokens_seen`: False
591
+ - `neftune_noise_alpha`: None
592
+ - `optim_target_modules`: None
593
+ - `batch_eval_metrics`: False
594
+ - `eval_on_start`: False
595
+ - `use_liger_kernel`: False
596
+ - `eval_use_gather_object`: False
597
+ - `average_tokens_across_devices`: False
598
+ - `prompts`: None
599
+ - `batch_sampler`: batch_sampler
600
+ - `multi_dataset_batch_sampler`: round_robin
601
+
602
+ </details>
603
+
604
+ ### Training Logs
605
+ | Epoch | Step | cosine_ndcg@10 |
606
+ |:------:|:----:|:--------------:|
607
+ | 1.0 | 9 | 0.8744 |
608
+ | 2.0 | 18 | 0.9251 |
609
+ | 3.0 | 27 | 0.9301 |
610
+ | 4.0 | 36 | 0.9253 |
611
+ | 5.0 | 45 | 0.9177 |
612
+ | 5.5556 | 50 | 0.9330 |
613
+ | 6.0 | 54 | 0.9330 |
614
+ | 7.0 | 63 | 0.9330 |
615
+ | 8.0 | 72 | 0.9330 |
616
+ | 9.0 | 81 | 0.9330 |
617
+ | 10.0 | 90 | 0.9330 |
618
+
619
+
620
+ ### Framework Versions
621
+ - Python: 3.11.11
622
+ - Sentence Transformers: 3.4.1
623
+ - Transformers: 4.48.3
624
+ - PyTorch: 2.5.1+cu124
625
+ - Accelerate: 1.3.0
626
+ - Datasets: 3.3.2
627
+ - Tokenizers: 0.21.0
628
+
629
+ ## Citation
630
+
631
+ ### BibTeX
632
+
633
+ #### Sentence Transformers
634
+ ```bibtex
635
+ @inproceedings{reimers-2019-sentence-bert,
636
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
637
+ author = "Reimers, Nils and Gurevych, Iryna",
638
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
639
+ month = "11",
640
+ year = "2019",
641
+ publisher = "Association for Computational Linguistics",
642
+ url = "https://arxiv.org/abs/1908.10084",
643
+ }
644
+ ```
645
+
646
+ #### MatryoshkaLoss
647
+ ```bibtex
648
+ @misc{kusupati2024matryoshka,
649
+ title={Matryoshka Representation Learning},
650
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
651
+ year={2024},
652
+ eprint={2205.13147},
653
+ archivePrefix={arXiv},
654
+ primaryClass={cs.LG}
655
+ }
656
+ ```
657
+
658
+ #### MultipleNegativesRankingLoss
659
+ ```bibtex
660
+ @misc{henderson2017efficient,
661
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
662
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
663
+ year={2017},
664
+ eprint={1705.00652},
665
+ archivePrefix={arXiv},
666
+ primaryClass={cs.CL}
667
+ }
668
+ ```
669
+
670
+ <!--
671
+ ## Glossary
672
+
673
+ *Clearly define terms in order to be accessible across audiences.*
674
+ -->
675
+
676
+ <!--
677
+ ## Model Card Authors
678
+
679
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
680
+ -->
681
+
682
+ <!--
683
+ ## Model Card Contact
684
+
685
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
686
+ -->
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Alibaba-NLP/gte-Qwen2-1.5B-instruct",
3
+ "architectures": [
4
+ "Qwen2Model"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoModel": "Alibaba-NLP/gte-Qwen2-1.5B-instruct--modeling_qwen.Qwen2Model",
9
+ "AutoModelForCausalLM": "Alibaba-NLP/gte-Qwen2-1.5B-instruct--modeling_qwen.Qwen2ForCausalLM",
10
+ "AutoModelForSequenceClassification": "Alibaba-NLP/gte-Qwen2-1.5B-instruct--modeling_qwen.Qwen2ForSequenceClassification"
11
+ },
12
+ "bos_token_id": 151643,
13
+ "eos_token_id": 151643,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 1536,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 8960,
18
+ "is_causal": false,
19
+ "max_position_embeddings": 131072,
20
+ "max_window_layers": 21,
21
+ "model_type": "qwen2",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 28,
24
+ "num_key_value_heads": 2,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_scaling": null,
27
+ "rope_theta": 1000000.0,
28
+ "sliding_window": null,
29
+ "tie_word_embeddings": false,
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.48.3",
32
+ "use_cache": true,
33
+ "use_sliding_window": false,
34
+ "vocab_size": 151646
35
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:346aac5480d14fecf691687fe22df100b3e61e9c47f75c8119d194bd80a11f5c
3
+ size 4994887136
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76874a6fefa3bce1d75251d36f8dd7add4fccc477b8e2e83bb784298b470d83
3
+ size 1178224504
model.safetensors.index.json ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6173075456
4
+ },
5
+ "weight_map": {
6
+ "embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
260
+ "layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
261
+ "layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
262
+ "layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
263
+ "layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
264
+ "layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
277
+ "layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
278
+ "layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
279
+ "layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
280
+ "layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
282
+ "layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
283
+ "layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
296
+ "layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
297
+ "layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
298
+ "layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
299
+ "layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
300
+ "layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
301
+ "layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
302
+ "layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
303
+ "layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
304
+ "layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
305
+ "layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
306
+ "layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
307
+ "layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
313
+ "layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
314
+ "layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
315
+ "layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
316
+ "layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
317
+ "layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
318
+ "layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
319
+ "layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
320
+ "layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
321
+ "layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
322
+ "layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
323
+ "layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
324
+ "layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
325
+ "layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
326
+ "layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
327
+ "layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
328
+ "layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
329
+ "layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
330
+ "layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
332
+ "layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
333
+ "layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
334
+ "layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
335
+ "layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
336
+ "layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
337
+ "layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
338
+ "layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
339
+ "layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
340
+ "layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
341
+ "layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
342
+ "layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
343
+ "norm.weight": "model-00002-of-00002.safetensors"
344
+ }
345
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 32768,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d14fba4f2dfcd2267034313a2d5f79f25c4c300a02b94a3e89a6657b116e1df
3
+ size 11418534
tokenizer_config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_eos_token": true,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<|im_start|>",
32
+ "<|im_end|>"
33
+ ],
34
+ "auto_map": {
35
+ "AutoTokenizer": [
36
+ "Alibaba-NLP/gte-Qwen2-1.5B-instruct--tokenization_qwen.Qwen2Tokenizer",
37
+ "Alibaba-NLP/gte-Qwen2-1.5B-instruct--tokenization_qwen.Qwen2TokenizerFast"
38
+ ]
39
+ },
40
+ "bos_token": null,
41
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
42
+ "clean_up_tokenization_spaces": false,
43
+ "eos_token": "<|endoftext|>",
44
+ "errors": "replace",
45
+ "extra_special_tokens": {},
46
+ "model_max_length": 32768,
47
+ "pad_token": "<|endoftext|>",
48
+ "split_special_tokens": false,
49
+ "tokenizer_class": "Qwen2Tokenizer",
50
+ "unk_token": null
51
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff