SentenceTransformer based on Alibaba-NLP/gte-Qwen2-1.5B-instruct
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-Qwen2-1.5B-instruct. It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-Qwen2-1.5B-instruct
- Maximum Sequence Length: 32768 tokens
- Output Dimensionality: 1536 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False}) with Transformer model: Qwen2Model
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("kenrogers/gte-ft-yt")
# Run inference
sentences = [
'1. What has changed in the time required for inference that allows for more progress to be made? \n2. What challenges did participants face during the engineering boot camp in early 2024?',
"is that we have some idea we have some thoughts that that say well we need to keep progress going so what's the next lowest hanging fruit that is accommodated by our Hardware uh and that's why it's like well we can just spend more time doing inference then right we we can we can do inference so fast now that spending extra time in inference isn't uh is feasible you know what would have used to take months or or or or at least weeks now can take you know a day or hours and so it makes sense you know the the the circumstances have changed uh we're running up against a a wall with our tried and true bread and butter methods uh and so now is the time for these you know for these kinds of uh leaps of progress yeah yeah and I remember you know when we were teaching like the a engineering boot camp and in early 2024 a lot of people were having you know issues with with streaming the token out and a lot of people were you know it's like it's like it just becomes so much easier to get you want",
"and in early 2024 a lot of people were having you know issues with with streaming the token out and a lot of people were you know it's like it's like it just becomes so much easier to get you want a quick result boom gbt 40 mini or whatever it is whatever equivalent of model are so good at those quick results those sort of system one results that now we're like okay what if we want to tackle bigger Beyond a single task kind of problems like we're seeing with deep research like we're seeing with these other things that require it to go chew on some things but I want to also just dig in there real quick because you mentioned agents and when we think about deep research or some of these types of tools they're actually agentic and they're using tools what we're talking about here is we're talking about reasoning inside the llm and we're talking about doing engineering within the llm and and sort of giving giving the sort of the brain itself instead of the application we're not giving the",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1536]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8333 |
cosine_accuracy@3 | 1.0 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8333 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.8333 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.933 |
cosine_mrr@10 | 0.9097 |
cosine_map@100 | 0.9097 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 84 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 84 samples:
sentence_0 sentence_1 type string string details - min: 32 tokens
- mean: 41.21 tokens
- max: 60 tokens
- min: 180 tokens
- mean: 208.05 tokens
- max: 231 tokens
- Samples:
sentence_0 sentence_1 1. What are the two big ideas aimed at scaling the power of LLMs during inference mentioned in the context?
2. How does the concept of reasoning in latent space relate to the efficiency of computation during inference?okay whiz we're talking about reasoning in latent space today is that the same as test time compute yeah that's right nice nice okay and we've got two big ideas to cover that are aimed at scaling the power of llms during inference is that right that yeah that's right so we have we have two you know latent space methods uh we have our continuous Chain of Thought or coconut right and then we have our more more directly more uh you know uh budget forcing recurrent depth uh model yes man that's a lot so when we look across both of those there appears to be a pretty simple explanation it's almost like uh you know when we when we're in that sort of thinking space of computation we don't have to do the thinky thinky in words and that's better maybe even it will allow us to find a new scaling axis is that right yeah that's exactly right I mean the idea is that we have this uh you know we we have this way of taking advantage of of uh the most powerful thinking space in the Transformer and not
1. What are the two big ideas aimed at scaling the power of LLMs during inference mentioned in the context?
2. How does the concept of reasoning in latent space relate to the efficiency of computation during inference?okay whiz we're talking about reasoning in latent space today is that the same as test time compute yeah that's right nice nice okay and we've got two big ideas to cover that are aimed at scaling the power of llms during inference is that right that yeah that's right so we have we have two you know latent space methods uh we have our continuous Chain of Thought or coconut right and then we have our more more directly more uh you know uh budget forcing recurrent depth uh model yes man that's a lot so when we look across both of those there appears to be a pretty simple explanation it's almost like uh you know when we when we're in that sort of thinking space of computation we don't have to do the thinky thinky in words and that's better maybe even it will allow us to find a new scaling axis is that right yeah that's exactly right I mean the idea is that we have this uh you know we we have this way of taking advantage of of uh the most powerful thinking space in the Transformer and not
1. What is the significance of staying in the "mind Palace" of the Transformer according to the context?
2. What are the main topics that will be covered in the demos mentioned in the context?is that right yeah that's exactly right I mean the idea is that we have this uh you know we we have this way of taking advantage of of uh the most powerful thinking space in the Transformer and not just like for a second right not automatically resolving back to token space but kind of staying in this very like uh you know in in the mind Palace of the of the Transformer without having to write down the words yes okay okay okay so basically scaling is dead Long Live scaling something like that yeah scaling has died uh we should scale yeah all right all right all right well I'm pumped for the demos today we're going to see some thinking in latent space let's cover all the Concepts we need to get there we'll get you back in for some discussions along the way because this one's pretty meta thanks whiz all right guys we are gonna rock out on large reasoning models today while we were originally going to just cover chain of continuous thought or coconut we saw a paper come out a couple
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_ndcg@10 |
---|---|---|
1.0 | 9 | 0.8744 |
2.0 | 18 | 0.9251 |
3.0 | 27 | 0.9301 |
4.0 | 36 | 0.9253 |
5.0 | 45 | 0.9177 |
5.5556 | 50 | 0.9330 |
6.0 | 54 | 0.9330 |
7.0 | 63 | 0.9330 |
8.0 | 72 | 0.9330 |
9.0 | 81 | 0.9330 |
10.0 | 90 | 0.9330 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for kenrogers/gte-ft-yt
Base model
Alibaba-NLP/gte-Qwen2-1.5B-instructEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.833
- Cosine Accuracy@3 on Unknownself-reported1.000
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.833
- Cosine Precision@3 on Unknownself-reported0.333
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.833
- Cosine Recall@3 on Unknownself-reported1.000