Uploaded model

  • Developed by: kei0902
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

# Google Colab の場合は上記の環境構築手順を行なわず、単にこのセルから実行していってください。
!pip uninstall unsloth -y
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"

## カスタムウィジェットマネージャの有効化

## Google Colab を使用する場合、以下のコードを実行してください。

from google.colab import output
output.enable_custom_widget_manager()





from google.colab import output
output.disable_custom_widget_manager()


# Google Colab のデフォルトで入っているパッケージをアップグレード(Moriyasu さんありがとうございます)
!pip install --upgrade torch
!pip install --upgrade xformers


# notebookでインタラクティブな表示を可能とする(ただし、うまく動かない場合あり)
!pip install ipywidgets --upgrade

# Install Flash Attention 2 for softcapping support
import torch
if torch.cuda.get_device_capability()[0] >= 8:
    !pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"

# llm-jp/llm-jp-3-13bを4bit量子化のqLoRA設定でロード。

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from unsloth import FastLanguageModel
import torch
max_seq_length = 512 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は8Bクラスのモデルを扱うためTrue

model_id = "kei0902/llm-jp-3-13b-it-C2"
new_model_id = "llm-jp-3-13b-it-C3" #Fine-Tuningしたモデルにつけたい名前、it: Instruction Tuning
# FastLanguageModel インスタンスを作成
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)


# SFT用のモデルを用意
model = FastLanguageModel.get_peft_model(
    model,
    r = 32,
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 32,
    lora_dropout = 0.05,
    bias = "none",
    use_gradient_checkpointing = "unsloth",
    random_state = 3407,
    use_rslora = False,
    loftq_config = None,
    max_seq_length = max_seq_length,
)


# Hugging Face Token を指定
# 下記の URL から Hugging Face Token を取得できますので下記の HF_TOKEN に入れてください。
# https://huggingface.co/settings/tokens
HF_TOKEN = "your token" #@param {type:"string"}

# あるいは Google Colab シークレットを使う場合、左のサイドバーより🔑マークをクリック
# HF_TOKEN という名前で Value に Hugging Face Token を入れてください。
# ノートブックからのアクセスのトグルをオンにし、下記の二行のコードのコメントアウトを外してください。

# from google.colab import userdata
# HF_TOKEN=userdata.get('HF_TOKEN')


from datasets import load_dataset


dataset = load_dataset("json", data_files="/content/ELYZA_模範解答_converted.json")
# パスの指定にご注意ください。アップロードしたファイルを右クリックし、「パスをコピー」をクリック、上記の data_files と合致していることをご確認ください。Omnicampus のディレクトリ構造とは異なるかもしれません。


# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""

# トークナイザーのEOSトークン(文末トークン)
EOS_TOKEN = tokenizer.eos_token

# フォーマット関数
def formatting_prompts_func(examples):
    # `Input` カラムを使用
    input_data = examples["Input"]
    output_data = examples["模範解答"]
    # プロンプトの作成
    formatted_text = prompt.format(input_data, output_data) + EOS_TOKEN
    return {"formatted_text": formatted_text}  # 新しいフィールド "formatted_text" を返す

# データセットにフォーマット関数を適用
dataset = dataset.map(
    formatting_prompts_func,
    num_proc=4,  # 並列処理数
)

# データセット確認
print(dataset)


# データを確認
print(dataset["train"]["formatted_text"][3])


"""
training_arguments: 学習の設定

  - output_dir:
      -トレーニング後のモデルを保存するディレクトリ

  - per_device_train_batch_size:
      - デバイスごとのトレーニングバッチサイズ

  - per_device_eval_batch_size:
      - デバイスごとの評価バッチサイズ

  - gradient_accumulation_steps:
      - 勾配を更新する前にステップを積み重ねる回数

  - optim:
      - オプティマイザの設定

  - num_train_epochs:
      - エポック数

  - eval_strategy:
      - 評価の戦略 ("no"/"steps"/"epoch")

  - eval_steps:
      - eval_strategyが"steps"のとき、評価を行うstep間隔

  - logging_strategy:
      - ログ記録の戦略

  - logging_steps:
      - ログを出力するステップ間隔

  - warmup_steps:
      - 学習率のウォームアップステップ数

  - save_steps:
      - モデルを保存するステップ間隔

  - save_total_limit:
      - 保存しておくcheckpointの数

  - max_steps:
      - トレーニングの最大ステップ数

  - learning_rate:
      - 学習率

  - fp16:
      - 16bit浮動小数点の使用設定(第8回演習を参考にすると良いです)

  - bf16:
      - BFloat16の使用設定

  - group_by_length:
      -  入力シーケンスの長さによりバッチをグループ化 (トレーニングの効率化)

  - report_to:
      - ログの送信先 ("wandb"/"tensorboard"など)
"""
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset=dataset["train"],
    max_seq_length = max_seq_length,
    dataset_text_field="formatted_text",
    packing = False,
    args = TrainingArguments(
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 4,
        num_train_epochs = 1,
        logging_steps = 10,
        warmup_steps = 10,
        save_steps=100,
        save_total_limit=2,
        max_steps=-1,
        learning_rate = 2e-4,
        fp16 = not is_bfloat16_supported(),
        bf16 = is_bfloat16_supported(),
        group_by_length=True,
        seed = 3407,
        output_dir = "outputs",
        report_to = "none",
    ),
)


#@title 現在のメモリ使用量を表示
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")


#@title 学習実行
trainer_stats = trainer.train()


# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
import json
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""


# 学習したモデルを用いてタスクを実行
from tqdm import tqdm

# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})


# jsonlで保存
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')


# モデルとトークナイザーをHugging Faceにアップロード。
# 一旦privateでアップロードしてください。
# 最終成果物が決まったらpublicにするようお願いします。
# 現在公開しているModel_Inference_Template.ipynbはunslothを想定していないためそのままでは動かない可能性があります。
model.push_to_hub_merged(
    new_model_id,
    tokenizer=tokenizer,
    save_method="lora",
    token=HF_TOKEN,
    private=True
)

# model.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving
# tokenizer.push_to_hub(new_model_id, token=HF_TOKEN) # Online saving




Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for kei0902/llm-jp-3-13b-it-C3

Finetuned
(1124)
this model