|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: MCG-NJU/videomae-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: videomae-base-cart-activity-v2-imagefolder |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# videomae-base-cart-activity-v2-imagefolder |
|
|
|
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1807 |
|
- Accuracy: 0.9533 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 17145 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:-----:|:---------------:|:--------:| |
|
| 0.3978 | 0.0334 | 572 | 0.9201 | 0.5969 | |
|
| 0.294 | 1.0334 | 1144 | 0.3255 | 0.9027 | |
|
| 0.5046 | 2.0334 | 1716 | 0.6951 | 0.7712 | |
|
| 0.3563 | 3.0334 | 2288 | 0.2648 | 0.9284 | |
|
| 0.4592 | 4.0334 | 2860 | 0.2469 | 0.9167 | |
|
| 0.1586 | 5.0334 | 3432 | 0.2294 | 0.9354 | |
|
| 0.1798 | 6.0334 | 4004 | 0.2167 | 0.9346 | |
|
| 0.3834 | 7.0334 | 4576 | 0.2334 | 0.9292 | |
|
| 0.1425 | 8.0334 | 5148 | 0.2864 | 0.9253 | |
|
| 0.1253 | 9.0334 | 5720 | 0.2605 | 0.9183 | |
|
| 0.2152 | 10.0334 | 6292 | 0.2687 | 0.9276 | |
|
| 0.1605 | 11.0334 | 6864 | 0.2657 | 0.9237 | |
|
| 0.1927 | 12.0334 | 7436 | 0.2134 | 0.9424 | |
|
| 0.1003 | 13.0334 | 8008 | 0.2687 | 0.9300 | |
|
| 0.2421 | 14.0334 | 8580 | 0.2345 | 0.9307 | |
|
| 0.1248 | 15.0334 | 9152 | 0.3142 | 0.9136 | |
|
| 0.2701 | 16.0334 | 9724 | 0.2174 | 0.9409 | |
|
| 0.1817 | 17.0334 | 10296 | 0.2328 | 0.9416 | |
|
| 0.1447 | 18.0334 | 10868 | 0.2165 | 0.9393 | |
|
| 0.1101 | 19.0334 | 11440 | 0.2811 | 0.9300 | |
|
| 0.1832 | 20.0334 | 12012 | 0.2230 | 0.9424 | |
|
| 0.1064 | 21.0334 | 12584 | 0.1843 | 0.9479 | |
|
| 0.2109 | 22.0334 | 13156 | 0.2523 | 0.9323 | |
|
| 0.0486 | 23.0334 | 13728 | 0.2485 | 0.9377 | |
|
| 0.1455 | 24.0334 | 14300 | 0.1807 | 0.9533 | |
|
| 0.0695 | 25.0334 | 14872 | 0.2349 | 0.9393 | |
|
| 0.2897 | 26.0334 | 15444 | 0.2229 | 0.9393 | |
|
| 0.0949 | 27.0334 | 16016 | 0.2156 | 0.9486 | |
|
| 0.0849 | 28.0334 | 16588 | 0.2122 | 0.9479 | |
|
| 0.0957 | 29.0325 | 17145 | 0.2072 | 0.9502 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|