wav2vec2-large-xlsr-mn_en_v1
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9588
- Wer: 0.3868
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.3016 | 0.31 | 400 | 1.8974 | 0.9524 |
1.4532 | 0.62 | 800 | 0.9980 | 0.7182 |
1.0379 | 0.93 | 1200 | 0.7873 | 0.6193 |
0.836 | 1.24 | 1600 | 0.7248 | 0.5773 |
0.7698 | 1.55 | 2000 | 0.6732 | 0.5495 |
0.7235 | 1.86 | 2400 | 0.6309 | 0.5178 |
0.6405 | 2.17 | 2800 | 0.6529 | 0.5105 |
0.6158 | 2.48 | 3200 | 0.6189 | 0.4981 |
0.5668 | 2.79 | 3600 | 0.6242 | 0.4865 |
0.5359 | 3.1 | 4000 | 0.6143 | 0.4703 |
0.5 | 3.41 | 4400 | 0.6288 | 0.4708 |
0.5006 | 3.72 | 4800 | 0.5983 | 0.4630 |
0.4874 | 4.03 | 5200 | 0.6253 | 0.4632 |
0.4425 | 4.34 | 5600 | 0.6035 | 0.4477 |
0.4364 | 4.65 | 6000 | 0.5864 | 0.4451 |
0.4342 | 4.96 | 6400 | 0.5920 | 0.4467 |
0.3932 | 5.27 | 6800 | 0.6110 | 0.4483 |
0.3919 | 5.58 | 7200 | 0.6228 | 0.4411 |
0.3996 | 5.89 | 7600 | 0.6215 | 0.4401 |
0.3724 | 6.2 | 8000 | 0.6375 | 0.4463 |
0.3541 | 6.51 | 8400 | 0.5837 | 0.4332 |
0.3573 | 6.82 | 8800 | 0.6098 | 0.4482 |
0.3495 | 7.13 | 9200 | 0.5830 | 0.4364 |
0.3238 | 7.44 | 9600 | 0.5945 | 0.4343 |
0.3244 | 7.75 | 10000 | 0.6099 | 0.4375 |
0.3296 | 8.06 | 10400 | 0.6191 | 0.4339 |
0.2991 | 8.37 | 10800 | 0.6058 | 0.4273 |
0.3043 | 8.68 | 11200 | 0.6060 | 0.4289 |
0.3034 | 8.99 | 11600 | 0.6172 | 0.4328 |
0.2711 | 9.3 | 12000 | 0.6674 | 0.4241 |
0.2869 | 9.6 | 12400 | 0.6451 | 0.4186 |
0.2828 | 9.91 | 12800 | 0.6250 | 0.4198 |
0.2586 | 10.22 | 13200 | 0.6477 | 0.4177 |
0.2625 | 10.53 | 13600 | 0.6563 | 0.4173 |
0.2588 | 10.84 | 14000 | 0.6566 | 0.4277 |
0.2431 | 11.15 | 14400 | 0.6822 | 0.4230 |
0.246 | 11.46 | 14800 | 0.6835 | 0.4188 |
0.2372 | 11.77 | 15200 | 0.6824 | 0.4319 |
0.2427 | 12.08 | 15600 | 0.7079 | 0.4188 |
0.2232 | 12.39 | 16000 | 0.6642 | 0.4131 |
0.2186 | 12.7 | 16400 | 0.6705 | 0.4158 |
0.2268 | 13.01 | 16800 | 0.6710 | 0.4179 |
0.2037 | 13.32 | 17200 | 0.6766 | 0.4152 |
0.2082 | 13.63 | 17600 | 0.6658 | 0.4155 |
0.2122 | 13.94 | 18000 | 0.6845 | 0.4248 |
0.1933 | 14.25 | 18400 | 0.7068 | 0.4107 |
0.1933 | 14.56 | 18800 | 0.7056 | 0.4149 |
0.1868 | 14.87 | 19200 | 0.6932 | 0.4152 |
0.1891 | 15.18 | 19600 | 0.7369 | 0.4104 |
0.1741 | 15.49 | 20000 | 0.7334 | 0.4095 |
0.1785 | 15.8 | 20400 | 0.7364 | 0.4142 |
0.1794 | 16.11 | 20800 | 0.7588 | 0.4146 |
0.167 | 16.42 | 21200 | 0.7607 | 0.4115 |
0.1666 | 16.73 | 21600 | 0.7603 | 0.4137 |
0.1715 | 17.04 | 22000 | 0.7678 | 0.4087 |
0.1641 | 17.35 | 22400 | 0.7855 | 0.4092 |
0.1514 | 17.66 | 22800 | 0.7811 | 0.4116 |
0.1648 | 17.97 | 23200 | 0.7801 | 0.4111 |
0.1421 | 18.28 | 23600 | 0.8001 | 0.4123 |
0.1528 | 18.59 | 24000 | 0.7936 | 0.4043 |
0.1516 | 18.9 | 24400 | 0.8146 | 0.4115 |
0.145 | 19.21 | 24800 | 0.7926 | 0.4093 |
0.1405 | 19.52 | 25200 | 0.8165 | 0.4083 |
0.1406 | 19.83 | 25600 | 0.8154 | 0.4060 |
0.1354 | 20.14 | 26000 | 0.8114 | 0.4026 |
0.1307 | 20.45 | 26400 | 0.8073 | 0.4023 |
0.1314 | 20.76 | 26800 | 0.8122 | 0.4018 |
0.1236 | 21.07 | 27200 | 0.8162 | 0.4043 |
0.1245 | 21.38 | 27600 | 0.8339 | 0.4002 |
0.1207 | 21.69 | 28000 | 0.8461 | 0.4059 |
0.1228 | 22.0 | 28400 | 0.8508 | 0.3984 |
0.1127 | 22.31 | 28800 | 0.8681 | 0.4026 |
0.1178 | 22.62 | 29200 | 0.8610 | 0.4006 |
0.1169 | 22.93 | 29600 | 0.8775 | 0.3996 |
0.1115 | 23.24 | 30000 | 0.8591 | 0.3999 |
0.105 | 23.55 | 30400 | 0.8945 | 0.3958 |
0.1085 | 23.86 | 30800 | 0.8954 | 0.3933 |
0.1054 | 24.17 | 31200 | 0.8982 | 0.3940 |
0.1007 | 24.48 | 31600 | 0.9025 | 0.3962 |
0.1018 | 24.79 | 32000 | 0.8998 | 0.3962 |
0.0973 | 25.1 | 32400 | 0.9150 | 0.3917 |
0.0969 | 25.41 | 32800 | 0.9348 | 0.3915 |
0.0934 | 25.72 | 33200 | 0.8974 | 0.3930 |
0.0983 | 26.03 | 33600 | 0.9129 | 0.3960 |
0.0962 | 26.34 | 34000 | 0.9215 | 0.3901 |
0.092 | 26.65 | 34400 | 0.9314 | 0.3881 |
0.0894 | 26.96 | 34800 | 0.9286 | 0.3885 |
0.087 | 27.27 | 35200 | 0.9277 | 0.3882 |
0.0906 | 27.58 | 35600 | 0.9400 | 0.3887 |
0.0886 | 27.89 | 36000 | 0.9285 | 0.3890 |
0.086 | 28.2 | 36400 | 0.9455 | 0.3890 |
0.0821 | 28.51 | 36800 | 0.9504 | 0.3874 |
0.0843 | 28.81 | 37200 | 0.9445 | 0.3875 |
0.0802 | 29.12 | 37600 | 0.9565 | 0.3872 |
0.0821 | 29.43 | 38000 | 0.9587 | 0.3871 |
0.0852 | 29.74 | 38400 | 0.9588 | 0.3868 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu102
- Datasets 1.18.3
- Tokenizers 0.13.2
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.