wav2vec2-large-xlsr-mn_en_v1

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9588
  • Wer: 0.3868

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 6
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.3016 0.31 400 1.8974 0.9524
1.4532 0.62 800 0.9980 0.7182
1.0379 0.93 1200 0.7873 0.6193
0.836 1.24 1600 0.7248 0.5773
0.7698 1.55 2000 0.6732 0.5495
0.7235 1.86 2400 0.6309 0.5178
0.6405 2.17 2800 0.6529 0.5105
0.6158 2.48 3200 0.6189 0.4981
0.5668 2.79 3600 0.6242 0.4865
0.5359 3.1 4000 0.6143 0.4703
0.5 3.41 4400 0.6288 0.4708
0.5006 3.72 4800 0.5983 0.4630
0.4874 4.03 5200 0.6253 0.4632
0.4425 4.34 5600 0.6035 0.4477
0.4364 4.65 6000 0.5864 0.4451
0.4342 4.96 6400 0.5920 0.4467
0.3932 5.27 6800 0.6110 0.4483
0.3919 5.58 7200 0.6228 0.4411
0.3996 5.89 7600 0.6215 0.4401
0.3724 6.2 8000 0.6375 0.4463
0.3541 6.51 8400 0.5837 0.4332
0.3573 6.82 8800 0.6098 0.4482
0.3495 7.13 9200 0.5830 0.4364
0.3238 7.44 9600 0.5945 0.4343
0.3244 7.75 10000 0.6099 0.4375
0.3296 8.06 10400 0.6191 0.4339
0.2991 8.37 10800 0.6058 0.4273
0.3043 8.68 11200 0.6060 0.4289
0.3034 8.99 11600 0.6172 0.4328
0.2711 9.3 12000 0.6674 0.4241
0.2869 9.6 12400 0.6451 0.4186
0.2828 9.91 12800 0.6250 0.4198
0.2586 10.22 13200 0.6477 0.4177
0.2625 10.53 13600 0.6563 0.4173
0.2588 10.84 14000 0.6566 0.4277
0.2431 11.15 14400 0.6822 0.4230
0.246 11.46 14800 0.6835 0.4188
0.2372 11.77 15200 0.6824 0.4319
0.2427 12.08 15600 0.7079 0.4188
0.2232 12.39 16000 0.6642 0.4131
0.2186 12.7 16400 0.6705 0.4158
0.2268 13.01 16800 0.6710 0.4179
0.2037 13.32 17200 0.6766 0.4152
0.2082 13.63 17600 0.6658 0.4155
0.2122 13.94 18000 0.6845 0.4248
0.1933 14.25 18400 0.7068 0.4107
0.1933 14.56 18800 0.7056 0.4149
0.1868 14.87 19200 0.6932 0.4152
0.1891 15.18 19600 0.7369 0.4104
0.1741 15.49 20000 0.7334 0.4095
0.1785 15.8 20400 0.7364 0.4142
0.1794 16.11 20800 0.7588 0.4146
0.167 16.42 21200 0.7607 0.4115
0.1666 16.73 21600 0.7603 0.4137
0.1715 17.04 22000 0.7678 0.4087
0.1641 17.35 22400 0.7855 0.4092
0.1514 17.66 22800 0.7811 0.4116
0.1648 17.97 23200 0.7801 0.4111
0.1421 18.28 23600 0.8001 0.4123
0.1528 18.59 24000 0.7936 0.4043
0.1516 18.9 24400 0.8146 0.4115
0.145 19.21 24800 0.7926 0.4093
0.1405 19.52 25200 0.8165 0.4083
0.1406 19.83 25600 0.8154 0.4060
0.1354 20.14 26000 0.8114 0.4026
0.1307 20.45 26400 0.8073 0.4023
0.1314 20.76 26800 0.8122 0.4018
0.1236 21.07 27200 0.8162 0.4043
0.1245 21.38 27600 0.8339 0.4002
0.1207 21.69 28000 0.8461 0.4059
0.1228 22.0 28400 0.8508 0.3984
0.1127 22.31 28800 0.8681 0.4026
0.1178 22.62 29200 0.8610 0.4006
0.1169 22.93 29600 0.8775 0.3996
0.1115 23.24 30000 0.8591 0.3999
0.105 23.55 30400 0.8945 0.3958
0.1085 23.86 30800 0.8954 0.3933
0.1054 24.17 31200 0.8982 0.3940
0.1007 24.48 31600 0.9025 0.3962
0.1018 24.79 32000 0.8998 0.3962
0.0973 25.1 32400 0.9150 0.3917
0.0969 25.41 32800 0.9348 0.3915
0.0934 25.72 33200 0.8974 0.3930
0.0983 26.03 33600 0.9129 0.3960
0.0962 26.34 34000 0.9215 0.3901
0.092 26.65 34400 0.9314 0.3881
0.0894 26.96 34800 0.9286 0.3885
0.087 27.27 35200 0.9277 0.3882
0.0906 27.58 35600 0.9400 0.3887
0.0886 27.89 36000 0.9285 0.3890
0.086 28.2 36400 0.9455 0.3890
0.0821 28.51 36800 0.9504 0.3874
0.0843 28.81 37200 0.9445 0.3875
0.0802 29.12 37600 0.9565 0.3872
0.0821 29.43 38000 0.9587 0.3871
0.0852 29.74 38400 0.9588 0.3868

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu102
  • Datasets 1.18.3
  • Tokenizers 0.13.2
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.