xls-r-hi-test / README.md
kapilkd13's picture
update model card README.md
5fc4d25
|
raw
history blame
4.48 kB
metadata
language:
  - hi
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_7_0
  - robust-speech-event
  - generated_from_trainer
datasets:
  - common_voice
model-index:
  - name: ''
    results: []

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9201
  • Wer: 1.0091

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.34 100 4.2570 0.9999
No log 0.68 200 3.3222 1.0005
No log 1.02 300 2.3755 1.0
No log 1.36 400 1.4071 1.0037
3.8379 1.69 500 1.2223 1.0091
3.8379 2.03 600 1.0885 1.0273
3.8379 2.37 700 0.9818 1.0098
3.8379 2.71 800 0.9154 1.0110
3.8379 3.05 900 0.8869 1.0154
0.5888 3.39 1000 0.8976 1.0149
0.5888 3.73 1100 0.8323 1.0124
0.5888 4.07 1200 0.8488 1.0087
0.5888 4.41 1300 0.8659 1.0069
0.5888 4.75 1400 0.8612 1.0043
0.3706 5.08 1500 0.8300 1.0183
0.3706 5.42 1600 0.8417 1.0091
0.3706 5.76 1700 0.8261 1.0087
0.3706 6.1 1800 0.8548 1.0068
0.3706 6.44 1900 0.7984 1.0110
0.2671 6.78 2000 0.8388 1.0117
0.2671 7.12 2100 0.8499 1.0073
0.2671 7.46 2200 0.8480 1.0112
0.2671 7.8 2300 0.7929 1.0099
0.2671 8.14 2400 0.8659 1.0089
0.2017 8.47 2500 0.8583 1.0063
0.2017 8.81 2600 0.8326 1.0110
0.2017 9.15 2700 0.8759 1.0037
0.2017 9.49 2800 0.8576 1.0100
0.2017 9.83 2900 0.8777 1.0224
0.1682 10.17 3000 0.8865 1.0280
0.1682 10.51 3100 0.9213 1.0068
0.1682 10.85 3200 0.8881 1.0152
0.1682 11.19 3300 0.9089 1.0100
0.1682 11.53 3400 0.8974 1.0127
0.1347 11.86 3500 0.9129 1.0123
0.1347 12.2 3600 0.9939 1.0169
0.1347 12.54 3700 0.9135 1.0083
0.1347 12.88 3800 0.9229 1.0118
0.1347 13.22 3900 0.9610 1.0107
0.1049 13.56 4000 0.9236 1.0099
0.1049 13.9 4100 0.8967 1.0085
0.1049 14.24 4200 0.8980 1.0081
0.1049 14.58 4300 0.9023 1.0081
0.1049 14.92 4400 0.9216 1.0079
0.0917 15.25 4500 0.9443 1.0090
0.0917 15.59 4600 0.9390 1.0091
0.0917 15.93 4700 0.9153 1.0083
0.0917 16.27 4800 0.9190 1.0092
0.0917 16.61 4900 0.9194 1.0091
0.0786 16.95 5000 0.9201 1.0091

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0