kalese's picture
End of training
c2b0360 verified
metadata
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-ro
tags:
  - generated_from_trainer
datasets:
  - arrow
metrics:
  - bleu
model-index:
  - name: opus-mt-en-bkm-Final-60
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: arrow
          type: arrow
          config: default
          split: train
          args: default
        metrics:
          - name: Bleu
            type: bleu
            value: 9.354

opus-mt-en-bkm-Final-60

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ro on the arrow dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5584
  • Bleu: 9.354
  • Gen Len: 40.6029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
3.4876 1.0 601 2.2031 2.3601 50.4173
2.2475 2.0 1202 1.9329 4.8587 40.8697
2.0162 3.0 1803 1.7959 5.9413 39.0495
1.8926 4.0 2404 1.7144 6.9033 40.8797
1.71 5.0 3005 1.6537 7.7651 40.4224
1.6501 6.0 3606 1.6161 8.441 41.3464
1.6053 7.0 4207 1.5869 8.812 40.534
1.554 8.0 4808 1.5725 9.2092 40.4813
1.5409 9.0 5409 1.5608 9.3966 40.9083
1.5049 10.0 6010 1.5584 9.354 40.6029

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2