|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/flan-t5-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mlsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-base-turkish-summarisation |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: mlsum |
|
type: mlsum |
|
config: tu |
|
split: validation |
|
args: tu |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 17.7215 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-base-turkish-summarisation |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the mlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2759 |
|
- Rouge1: 17.7215 |
|
- Rouge2: 11.6449 |
|
- Rougel: 17.1215 |
|
- Rougelsum: 17.0317 |
|
- Gen Len: 20.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.5856 | 0.0802 | 200 | 1.3164 | 18.0769 | 11.7482 | 17.3132 | 17.32 | 20.0 | |
|
| 1.4888 | 0.1604 | 400 | 1.2901 | 17.6893 | 11.6682 | 16.9148 | 16.8964 | 20.0 | |
|
| 1.4787 | 0.2407 | 600 | 1.2827 | 17.5252 | 11.5143 | 16.8586 | 16.8281 | 20.0 | |
|
| 1.488 | 0.3209 | 800 | 1.2637 | 17.8913 | 11.7712 | 17.1369 | 17.0949 | 20.0 | |
|
| 1.4105 | 0.4011 | 1000 | 1.2759 | 17.7215 | 11.6449 | 17.1215 | 17.0317 | 20.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0 |
|
- Pytorch 2.2.2 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|