yolox_s-v0.1.1 / README.md
kadirnar's picture
Update README.md
ec5149d
|
raw
history blame
1.41 kB
metadata
license: apache-2.0
tags:
  - object-detection
  - computer-vision
  - yolox
  - yolov3
  - yolov5
datasets:
  - detection-datasets/coco

Model Description

YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported.

YOLOXDetect-Pip: This repo is a packaged version of the YOLOX for easy installation and use.

[Paper Repo]: Implementation of paper - YOLOX

Installation

pip install yoloxdetect

Yolov6 Inference

from yoloxdetect import YoloxDetect
from yolox.data.datasets import COCO_CLASSES

model = YoloxDetect(
    model_path = "kadirnar/yolox_s-v0.1.1",
    config_path = "configs.yolox_s",
    device = "cuda:0",
    classes = COCO_CLASSES,
    confidence_threshold = 0.25,
    nms_threshold = 0.45,
)
model.classes = COCO_CLASSES
model.conf = 0.25
model.iou = 0.45
model.show = False
model.save = True

pred = model.predict(image='data/images', img_size=640)

BibTeX Entry and Citation Info

@article{yolox2021,
 title={YOLOX: Exceeding YOLO Series in 2021},
 author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
 journal={arXiv preprint arXiv:2107.08430},
 year={2021}
}