|
--- |
|
license: gpl-3.0 |
|
tags: |
|
- object-detection |
|
- computer-vision |
|
- yolov9 |
|
- pypi |
|
datasets: |
|
- detection-datasets/coco |
|
--- |
|
|
|
### Model Description |
|
[YOLOv9: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2402.13616) |
|
|
|
[YOLOv9-Pip: Packaged version of the Yolov9 repository](https://github.com/kadirnar/yolov9-pip) |
|
|
|
[Paper Repo: Implementation of paper - YOLOv9](https://github.com/WongKinYiu/yolov9) |
|
|
|
### Installation |
|
``` |
|
pip install yolov9pip |
|
``` |
|
|
|
### Yolov7 Inference |
|
```python |
|
import yolov9 |
|
|
|
# load pretrained or custom model |
|
model = yolov7.load('kadirnar/yolov9-gelan-c') |
|
|
|
# set model parameters |
|
model.conf = 0.25 # NMS confidence threshold |
|
model.iou = 0.45 # NMS IoU threshold |
|
model.classes = None # (optional list) filter by class |
|
|
|
# set image |
|
imgs = 'inference/images' |
|
|
|
# perform inference |
|
results = model(imgs) |
|
|
|
# inference with larger input size and test time augmentation |
|
results = model(img, size=640, augment=True) |
|
|
|
# parse results |
|
predictions = results.pred[0] |
|
boxes = predictions[:, :4] # x1, y1, x2, y2 |
|
scores = predictions[:, 4] |
|
categories = predictions[:, 5] |
|
|
|
# show detection bounding boxes on image |
|
results.show() |
|
``` |
|
|
|
### BibTeX Entry and Citation Info |
|
``` |
|
@article{wang2024yolov9, |
|
title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information}, |
|
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark}, |
|
booktitle={arXiv preprint arXiv:2402.13616}, |
|
year={2024} |
|
} |
|
``` |
|
|