judithrosell's picture
End of training
62ff0f6 verified
|
raw
history blame
2.4 kB
metadata
library_name: transformers
license: mit
base_model: m3rg-iitd/matscibert
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: MatSciBERT_ST_DA_1800
    results: []

MatSciBERT_ST_DA_1800

This model is a fine-tuned version of m3rg-iitd/matscibert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1671
  • Precision: 0.8613
  • Recall: 0.8455
  • F1: 0.8533
  • Accuracy: 0.9746

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0809 1.0 1050 0.1024 0.8455 0.8230 0.8341 0.9719
0.0424 2.0 2100 0.1023 0.8371 0.8365 0.8368 0.9714
0.025 3.0 3150 0.1397 0.8397 0.8223 0.8309 0.9702
0.0142 4.0 4200 0.1403 0.8592 0.8379 0.8484 0.9736
0.0074 5.0 5250 0.1271 0.8727 0.8641 0.8684 0.9771
0.0047 6.0 6300 0.1430 0.8742 0.8581 0.8661 0.9769
0.0023 7.0 7350 0.1777 0.8578 0.8310 0.8442 0.9733
0.0015 8.0 8400 0.1524 0.8637 0.8581 0.8609 0.9760
0.0013 9.0 9450 0.1683 0.8609 0.8441 0.8524 0.9745
0.0008 10.0 10500 0.1671 0.8613 0.8455 0.8533 0.9746

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1