|
--- |
|
license: mit |
|
base_model: m3rg-iitd/matscibert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: MatSciBERT_BIOMAT_NER2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MatSciBERT_BIOMAT_NER2 |
|
|
|
This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5316 |
|
- Precision: 0.9596 |
|
- Recall: 0.9442 |
|
- F1: 0.9518 |
|
- Accuracy: 0.9428 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1601 | 1.0 | 793 | 0.2740 | 0.9603 | 0.9459 | 0.9530 | 0.9444 | |
|
| 0.0276 | 2.0 | 1586 | 0.3631 | 0.9599 | 0.9447 | 0.9522 | 0.9431 | |
|
| 0.0139 | 3.0 | 2379 | 0.3745 | 0.9602 | 0.9445 | 0.9523 | 0.9430 | |
|
| 0.0054 | 4.0 | 3172 | 0.4634 | 0.9601 | 0.9441 | 0.9521 | 0.9429 | |
|
| 0.0039 | 5.0 | 3965 | 0.4709 | 0.9594 | 0.9440 | 0.9517 | 0.9423 | |
|
| 0.0018 | 6.0 | 4758 | 0.5042 | 0.9587 | 0.9440 | 0.9513 | 0.9426 | |
|
| 0.0011 | 7.0 | 5551 | 0.5223 | 0.9598 | 0.9439 | 0.9518 | 0.9425 | |
|
| 0.0009 | 8.0 | 6344 | 0.5241 | 0.9594 | 0.9438 | 0.9515 | 0.9424 | |
|
| 0.0004 | 9.0 | 7137 | 0.5277 | 0.9595 | 0.9441 | 0.9517 | 0.9428 | |
|
| 0.0004 | 10.0 | 7930 | 0.5316 | 0.9596 | 0.9442 | 0.9518 | 0.9428 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|