metadata
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: skops
model_file: model.skops
widget:
structuredData:
AveBedrms:
- 0.9290780141843972
- 0.9458483754512635
- 1.087360594795539
AveOccup:
- 3.1134751773049647
- 3.0613718411552346
- 3.2657992565055762
AveRooms:
- 6.304964539007092
- 6.945848375451264
- 3.8884758364312266
HouseAge:
- 17
- 15
- 24
Latitude:
- 34.23
- 36.84
- 34.04
Longitude:
- -117.41
- -119.77
- -118.3
MedInc:
- 6.1426
- 5.3886
- 1.7109
Population:
- 439
- 848
- 1757
Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
cv | |
estimators | [('knn@5', Pipeline(steps=[('select_cols', ColumnTransformer(transformers=[('long_and_lat', 'passthrough', ['Longitude', 'Latitude'])])), ('knn', KNeighborsRegressor())]))] |
final_estimator__alpha | 0.9 |
final_estimator__ccp_alpha | 0.0 |
final_estimator__criterion | friedman_mse |
final_estimator__init | |
final_estimator__learning_rate | 0.1 |
final_estimator__loss | squared_error |
final_estimator__max_depth | 3 |
final_estimator__max_features | |
final_estimator__max_leaf_nodes | |
final_estimator__min_impurity_decrease | 0.0 |
final_estimator__min_samples_leaf | 1 |
final_estimator__min_samples_split | 2 |
final_estimator__min_weight_fraction_leaf | 0.0 |
final_estimator__n_estimators | 500 |
final_estimator__n_iter_no_change | |
final_estimator__random_state | 0 |
final_estimator__subsample | 1.0 |
final_estimator__tol | 0.0001 |
final_estimator__validation_fraction | 0.1 |
final_estimator__verbose | 0 |
final_estimator__warm_start | False |
final_estimator | GradientBoostingRegressor(n_estimators=500, random_state=0) |
n_jobs | |
passthrough | True |
verbose | 0 |
knn@5 | Pipeline(steps=[('select_cols', ColumnTransformer(transformers=[('long_and_lat', 'passthrough', ['Longitude', 'Latitude'])])), ('knn', KNeighborsRegressor())]) |
knn@5__memory | |
knn@5__steps | [('select_cols', ColumnTransformer(transformers=[('long_and_lat', 'passthrough', ['Longitude', 'Latitude'])])), ('knn', KNeighborsRegressor())] |
knn@5__verbose | False |
knn@5__select_cols | ColumnTransformer(transformers=[('long_and_lat', 'passthrough', ['Longitude', 'Latitude'])]) |
knn@5__knn | KNeighborsRegressor() |
knn@5__select_cols__n_jobs | |
knn@5__select_cols__remainder | drop |
knn@5__select_cols__sparse_threshold | 0.3 |
knn@5__select_cols__transformer_weights | |
knn@5__select_cols__transformers | [('long_and_lat', 'passthrough', ['Longitude', 'Latitude'])] |
knn@5__select_cols__verbose | False |
knn@5__select_cols__verbose_feature_names_out | True |
knn@5__select_cols__long_and_lat | passthrough |
knn@5__knn__algorithm | auto |
knn@5__knn__leaf_size | 30 |
knn@5__knn__metric | minkowski |
knn@5__knn__metric_params | |
knn@5__knn__n_jobs | |
knn@5__knn__n_neighbors | 5 |
knn@5__knn__p | 2 |
knn@5__knn__weights | uniform |
Model Plot
StackingRegressor(estimators=[('knn@5',Pipeline(steps=[('select_cols',ColumnTransformer(transformers=[('long_and_lat','passthrough',['Longitude','Latitude'])])),('knn',KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
StackingRegressor(estimators=[('knn@5',Pipeline(steps=[('select_cols',ColumnTransformer(transformers=[('long_and_lat','passthrough',['Longitude','Latitude'])])),('knn',KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)
ColumnTransformer(transformers=[('long_and_lat', 'passthrough',['Longitude', 'Latitude'])])
['Longitude', 'Latitude']
passthrough
KNeighborsRegressor()
GradientBoostingRegressor(n_estimators=500, random_state=0)
Evaluation Results
[More Information Needed]
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]