MixtureofMerges-MoE-2x7b-SLERPv0.9
MixtureofMerges-MoE-2x7b-SLERPv0.9 is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: jsfs11/MixtureofMerges-MoE-2x7b-v7
layer_range: [0, 32]
- model: jsfs11/MixtureofMerges-MoE-2x7bRP-v8
layer_range: [0, 32]
merge_method: slerp
base_model: jsfs11/MixtureofMerges-MoE-2x7b-v7
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jsfs11/MixtureofMerges-MoE-2x7b-SLERPv0.9"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.75 |
AI2 Reasoning Challenge (25-Shot) | 73.12 |
HellaSwag (10-Shot) | 88.76 |
MMLU (5-Shot) | 65.00 |
TruthfulQA (0-shot) | 74.83 |
Winogrande (5-shot) | 83.58 |
GSM8k (5-shot) | 69.22 |
- Downloads last month
- 50
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for jsfs11/MixtureofMerges-MoE-2x7b-SLERPv0.9
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard73.120
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.760
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard65.000
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard74.830
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard83.580
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard69.220