YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
To load and initialize the Generator model from the repository, follow these steps:
Install Required Packages: Ensure you have the necessary Python packages installed:
pip install torch omegaconf huggingface_hubDownload Model Files: Retrieve the
generator.pth,config.json, andmodel.pyfiles from the Hugging Face repository. You can use thehuggingface_hublibrary for this:from huggingface_hub import hf_hub_download repo_id = "Kiwinicki/sat2map-generator" generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth") config_path = hf_hub_download(repo_id=repo_id, filename="config.json") model_path = hf_hub_download(repo_id=repo_id, filename="model.py")Load the Model: Incorporate the downloaded
model.pyto define theGeneratorclass, then load the model's state dictionary and configuration:import torch import json from omegaconf import OmegaConf import sys from pathlib import Path from model import Generator # Load configuration with open(config_path, "r") as f: config_dict = json.load(f) cfg = OmegaConf.create(config_dict) # Initialize and load the generator model generator = Generator(cfg) generator.load_state_dict(torch.load(generator_path)) generator.eval() x = torch.randn([1, cfg['channels'], 256, 256]) out = generator(x)Here,
generatoris the initialized model ready for inference.
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support