|
--- |
|
pipeline_tag: text-generation |
|
language: |
|
- multilingual |
|
inference: false |
|
license: cc-by-nc-4.0 |
|
library_name: transformers |
|
--- |
|
|
|
<br><br> |
|
|
|
<p align="center"> |
|
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px"> |
|
</p> |
|
|
|
<p align="center"> |
|
<b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b> |
|
</p> |
|
|
|
[Blog](https://jina.ai/news/readerlm-v2-frontier-small-language-model-for-markdown-and-json) | [Colab](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing) |
|
|
|
# ReaderLM-v2 |
|
|
|
`ReaderLM-v2` is the second generation of Jina ReaderLM, a **1.5B** parameter language model that converts raw HTML into beautifully formatted markdown or JSON with superior accuracy and improved longer context handling. |
|
It supports multiple languages (29 in total) and is specialized for tasks involving HTML parsing, transformation, and text extraction. |
|
|
|
## Model Overview |
|
|
|
- **Model Type**: Autoregressive, decoder-only transformer |
|
- **Parameter Count**: ~1.5B |
|
- **Context Window**: Up to 512K tokens (combined input and output) |
|
- **Supported Languages**: English, Chinese, Japanese, Korean, French, Spanish, Portuguese, German, Italian, Russian, Vietnamese, Thai, Arabic, and more (29 total) |
|
|
|
## What's New in `ReaderLM-v2` |
|
|
|
`ReaderLM-v2` features several significant improvements over its predecessor: |
|
|
|
- **Better Markdown Generation**: Generates cleaner, more readable Markdown output. |
|
- **JSON Output**: Can produce JSON-formatted text, enabling structured extraction for further downstream processing. |
|
- **Longer Context Handling**: Can handle up to 512K tokens, which is beneficial for large HTML documents. |
|
- **Multilingual Support**: Covers 29 languages for broader application across international web data. |
|
|
|
--- |
|
|
|
# Usage |
|
|
|
Below, you will find instructions and examples for using `ReaderLM-v2` locally using the Hugging Face Transformers library. |
|
For a more hands-on experience in a hosted environment, see the [Google Colab Notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing). |
|
|
|
## On Google Colab |
|
|
|
The easiest way to experience `ReaderLM-v2` is by running our [Colab notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing), |
|
The notebook demonstrates HTML-to-markdown conversion, JSON extraction, and instruction-following using the HackerNews frontpage as an example. |
|
The notebook is optimized for Colab's free T4 GPU tier and requires `vllm` and `triton` for acceleration and running. |
|
Feel free to test it with any website. |
|
For HTML-to-markdown tasks, simply input the raw HTML without any prefix instructions. |
|
However, JSON output and instruction-based extraction require specific prompt formatting as shown in the examples. |
|
|
|
|
|
## Local Usage |
|
|
|
To use `ReaderLM-v2` locally: |
|
|
|
1. Install the necessary dependencies: |
|
|
|
```bash |
|
pip install transformers |
|
``` |
|
|
|
2. Load and run the model: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import re |
|
|
|
device = "cuda" # or "cpu" |
|
tokenizer = AutoTokenizer.from_pretrained("jinaai/ReaderLM-v2") |
|
model = AutoModelForCausalLM.from_pretrained("jinaai/ReaderLM-v2").to(device) |
|
``` |
|
|
|
3. (Optional) Pre-clean your HTML to remove scripts, styles, comments, to reduce the noise and length of the input a bit (i.e. make it more friendly for GPU VRAM): |
|
|
|
```python |
|
# Patterns |
|
SCRIPT_PATTERN = r'<[ ]*script.*?\/[ ]*script[ ]*>' |
|
STYLE_PATTERN = r'<[ ]*style.*?\/[ ]*style[ ]*>' |
|
META_PATTERN = r'<[ ]*meta.*?>' |
|
COMMENT_PATTERN = r'<[ ]*!--.*?--[ ]*>' |
|
LINK_PATTERN = r'<[ ]*link.*?>' |
|
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>' |
|
SVG_PATTERN = r'(<svg[^>]*>)(.*?)(<\/svg>)' |
|
|
|
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str: |
|
return re.sub( |
|
SVG_PATTERN, |
|
lambda match: f"{match.group(1)}{new_content}{match.group(3)}", |
|
html, |
|
flags=re.DOTALL, |
|
) |
|
|
|
def replace_base64_images(html: str, new_image_src: str = "#") -> str: |
|
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html) |
|
|
|
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False): |
|
html = re.sub(SCRIPT_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL) |
|
html = re.sub(STYLE_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL) |
|
html = re.sub(META_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL) |
|
html = re.sub(COMMENT_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL) |
|
html = re.sub(LINK_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL) |
|
|
|
if clean_svg: |
|
html = replace_svg(html) |
|
if clean_base64: |
|
html = replace_base64_images(html) |
|
return html |
|
``` |
|
|
|
4. Create a prompt for the model: |
|
|
|
```python |
|
def create_prompt(text: str, tokenizer=None, instruction: str = None, schema: str = None) -> str: |
|
""" |
|
Create a prompt for the model with optional instruction and JSON schema. |
|
""" |
|
if not instruction: |
|
instruction = "Extract the main content from the given HTML and convert it to Markdown format." |
|
if schema: |
|
# This is an example instruction for JSON output |
|
instruction = "Extract the specified information from a list of news threads and present it in a structured JSON format." |
|
prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json{schema}```" |
|
else: |
|
prompt = f"{instruction}\n```html\n{text}\n```" |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": prompt, |
|
} |
|
] |
|
|
|
return tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
``` |
|
|
|
### HTML to Markdown Example |
|
|
|
```python |
|
# Example HTML |
|
html = "<html><body><h1>Hello, world!</h1></body></html>" |
|
|
|
html = clean_html(html) |
|
|
|
input_prompt = create_prompt(html) |
|
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device) |
|
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### Instruction-Focused Extraction |
|
|
|
```python |
|
instruction = "Extract the menu items from the given HTML and convert it to Markdown format." |
|
input_prompt = create_prompt(html, instruction=instruction) |
|
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device) |
|
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### HTML to JSON Example |
|
|
|
```python |
|
schema = """ |
|
{ |
|
"type": "object", |
|
"properties": { |
|
"title": { |
|
"type": "string" |
|
}, |
|
"author": { |
|
"type": "string" |
|
}, |
|
"date": { |
|
"type": "string" |
|
}, |
|
"content": { |
|
"type": "string" |
|
} |
|
}, |
|
"required": ["title", "author", "date", "content"] |
|
} |
|
""" |
|
|
|
html = clean_html(html) |
|
input_prompt = create_prompt(html, schema=schema) |
|
|
|
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device) |
|
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
## AWS Sagemaker & Azure Marketplace & Google Cloud Platform |
|
|
|
Coming soon. |
|
|