Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
model-index:
|
3 |
+
- name: jiazhengli/Llama-3.1-8B-RoleMRC-sft
|
4 |
+
results: []
|
5 |
+
datasets:
|
6 |
+
- Junrulu/RoleMRC
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
base_model: meta-llama/Meta-Llama-3.1-8B
|
10 |
+
license: llama3
|
11 |
+
---
|
12 |
+
|
13 |
+
# Model Card for Llama-3.1-8B-RoleMRC-sft
|
14 |
+
|
15 |
+
This repository provides a fine-tuned version of Llama-3.1-8B, using our proposed [RoleMRC dataset](https://huggingface.co/datasets/Junrulu/RoleMRC). We obey all licenses mentioned in llama3's work.
|
16 |
+
|
17 |
+
## Performance
|
18 |
+
|
19 |
+
Reference-based Evaluation Result
|
20 |
+
|
21 |
+
| Model | BLEU | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-Lsum | METEOR | BERTScore F1 |
|
22 |
+
|--------------------------------|--------|---------|---------|---------|------------|--------|-----------|
|
23 |
+
| LLaMA3.1-8B-Instruct | 0.0226 | 0.2277 | 0.0615 | 0.1509 | 0.1650 | 0.2594 | 0.8478 |
|
24 |
+
| LLaMA3.1-70B-Instruct | 0.0232 | 0.2258 | 0.0646 | 0.1500 | 0.1661 | 0.2632 | 0.8480 |
|
25 |
+
| **LLaMA3.1-8B-RoleMRC-SFT** | 0.1782 | 0.4628 | 0.2676 | 0.3843 | 0.3853 | 0.3975 | 0.8831 |
|
26 |
+
| LLaMA3.1-8B-RoleMRC-DPO | 0.1056 | 0.3989 | 0.1785 | 0.2988 | 0.3001 | 0.4051 | 0.8805 |
|
27 |
+
|
28 |
+
General Benchmark
|
29 |
+
|
30 |
+
| Model | GSM8K 8-shot | Math 4-shot | GPQA 0-shot | IFEval 3-shot | MMLU-Pro 5-shot | MMLU 0-shot | PiQA 3-shot | MUSR 0-shot | TruthfulQA 3-shot / Avg. |
|
31 |
+
|----------------------------------------|-------------|------------|-------------|--------------|---------------|-----------|-----------|-----------|------------------------|
|
32 |
+
| LLAMA3.1-8B | 48.98 | 17.78 | 12.5 | 16.67 | 35.21 | 63.27 | 81.77 | 38.1 | 28.52 |
|
33 |
+
| LLAMA3.1-8B-INSTRUCT | 77.41 | 34.1 | 12.72 | 57.67 | 40.77 | 68.1 | 82.1 | 39.81 | 36.47 |
|
34 |
+
| **LLaMA3.1-8B-RoleMRC-SFT** | 56.18 | 12.78 | 19.64 | 42.09 | 31.58 | 59.3 | 82.64 | 40.34 | 35.01 |
|
35 |
+
| LLaMA3.1-8B-RoleMRC-DPO | 58.53 | 13.5 | 20.09 | 46.64 | 31.8 | 59.96 | 82.7 | 39.42 | 37.33 |
|
36 |
+
|
37 |
+
## Evaluation Details
|
38 |
+
Five conditional benchmarks, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness):
|
39 |
+
- GSM8K: 8-shot, report strict match
|
40 |
+
- IFEval: 3-shot, report instruction-level strict accuracy
|
41 |
+
- PiQA: 3-shot, report accuracy
|
42 |
+
- MMLU: 0-shot, report normalized accuracy
|
43 |
+
- TruthfulQA: 3-shot, report accuracy of single-true mc1 setting
|
44 |
+
|
45 |
+
One open-ended benchmark, using official [alpaca_eval](https://github.com/tatsu-lab/alpaca_eval/):
|
46 |
+
- AlpacaEval2: win rate (%) judged by GPT-4-turbo between the model's outputs vs. the GPT-4-turbo's response
|
47 |
+
- LC AlpacaEval2: length-debiased win rate (%) of AlpacaEval2
|
48 |
+
- Length in Tokens: the average output length of AlpacaEval2, calculated in tokens with Llama3's tokenizer
|
49 |
+
|
50 |
+
## Input Format
|
51 |
+
|
52 |
+
The model is trained to use the following format:
|
53 |
+
```
|
54 |
+
<|start_header_id|>user<|end_header_id|>
|
55 |
+
|
56 |
+
{PROMPT}<|eot_id|>
|
57 |
+
<|start_header_id|>assistant<|end_header_id|>
|
58 |
+
|
59 |
+
{Response}
|
60 |
+
```
|
61 |
+
|
62 |
+
## Training hyperparameters
|
63 |
+
|
64 |
+
The following hyperparameters were used during DPO/SamPO training:
|
65 |
+
- learning_rate: 1e-5
|
66 |
+
- total_train_batch_size: 16
|
67 |
+
- optimizer: AdamW with beta1 0.9, beta2 0.999 and epsilon 1e-8
|
68 |
+
- lr_scheduler_type: cosine
|
69 |
+
- lr_scheduler_warmup_ratio: 0.04
|
70 |
+
- num_epochs: 1.0
|
71 |
+
- Specifically add above input format over training samples
|