jiazhengli commited on
Commit
869895d
·
verified ·
1 Parent(s): 2eaa010

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: jiazhengli/Llama-3.1-8B-RoleMRC-sft
4
+ results: []
5
+ datasets:
6
+ - Junrulu/RoleMRC
7
+ language:
8
+ - en
9
+ base_model: meta-llama/Meta-Llama-3.1-8B
10
+ license: llama3
11
+ ---
12
+
13
+ # Model Card for Llama-3.1-8B-RoleMRC-sft
14
+
15
+ This repository provides a fine-tuned version of Llama-3.1-8B, using our proposed [RoleMRC dataset](https://huggingface.co/datasets/Junrulu/RoleMRC). We obey all licenses mentioned in llama3's work.
16
+
17
+ ## Performance
18
+
19
+ Reference-based Evaluation Result
20
+
21
+ | Model | BLEU | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-Lsum | METEOR | BERTScore F1 |
22
+ |--------------------------------|--------|---------|---------|---------|------------|--------|-----------|
23
+ | LLaMA3.1-8B-Instruct | 0.0226 | 0.2277 | 0.0615 | 0.1509 | 0.1650 | 0.2594 | 0.8478 |
24
+ | LLaMA3.1-70B-Instruct | 0.0232 | 0.2258 | 0.0646 | 0.1500 | 0.1661 | 0.2632 | 0.8480 |
25
+ | **LLaMA3.1-8B-RoleMRC-SFT** | 0.1782 | 0.4628 | 0.2676 | 0.3843 | 0.3853 | 0.3975 | 0.8831 |
26
+ | LLaMA3.1-8B-RoleMRC-DPO | 0.1056 | 0.3989 | 0.1785 | 0.2988 | 0.3001 | 0.4051 | 0.8805 |
27
+
28
+ General Benchmark
29
+
30
+ | Model | GSM8K 8-shot | Math 4-shot | GPQA 0-shot | IFEval 3-shot | MMLU-Pro 5-shot | MMLU 0-shot | PiQA 3-shot | MUSR 0-shot | TruthfulQA 3-shot / Avg. |
31
+ |----------------------------------------|-------------|------------|-------------|--------------|---------------|-----------|-----------|-----------|------------------------|
32
+ | LLAMA3.1-8B | 48.98 | 17.78 | 12.5 | 16.67 | 35.21 | 63.27 | 81.77 | 38.1 | 28.52 |
33
+ | LLAMA3.1-8B-INSTRUCT | 77.41 | 34.1 | 12.72 | 57.67 | 40.77 | 68.1 | 82.1 | 39.81 | 36.47 |
34
+ | **LLaMA3.1-8B-RoleMRC-SFT** | 56.18 | 12.78 | 19.64 | 42.09 | 31.58 | 59.3 | 82.64 | 40.34 | 35.01 |
35
+ | LLaMA3.1-8B-RoleMRC-DPO | 58.53 | 13.5 | 20.09 | 46.64 | 31.8 | 59.96 | 82.7 | 39.42 | 37.33 |
36
+
37
+ ## Evaluation Details
38
+ Five conditional benchmarks, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness):
39
+ - GSM8K: 8-shot, report strict match
40
+ - IFEval: 3-shot, report instruction-level strict accuracy
41
+ - PiQA: 3-shot, report accuracy
42
+ - MMLU: 0-shot, report normalized accuracy
43
+ - TruthfulQA: 3-shot, report accuracy of single-true mc1 setting
44
+
45
+ One open-ended benchmark, using official [alpaca_eval](https://github.com/tatsu-lab/alpaca_eval/):
46
+ - AlpacaEval2: win rate (%) judged by GPT-4-turbo between the model's outputs vs. the GPT-4-turbo's response
47
+ - LC AlpacaEval2: length-debiased win rate (%) of AlpacaEval2
48
+ - Length in Tokens: the average output length of AlpacaEval2, calculated in tokens with Llama3's tokenizer
49
+
50
+ ## Input Format
51
+
52
+ The model is trained to use the following format:
53
+ ```
54
+ <|start_header_id|>user<|end_header_id|>
55
+
56
+ {PROMPT}<|eot_id|>
57
+ <|start_header_id|>assistant<|end_header_id|>
58
+
59
+ {Response}
60
+ ```
61
+
62
+ ## Training hyperparameters
63
+
64
+ The following hyperparameters were used during DPO/SamPO training:
65
+ - learning_rate: 1e-5
66
+ - total_train_batch_size: 16
67
+ - optimizer: AdamW with beta1 0.9, beta2 0.999 and epsilon 1e-8
68
+ - lr_scheduler_type: cosine
69
+ - lr_scheduler_warmup_ratio: 0.04
70
+ - num_epochs: 1.0
71
+ - Specifically add above input format over training samples