Model Card for Llama-3.1-8B-RoleMRC-sft
This repository provides a fine-tuned version of Llama-3.1-8B, using our proposed RoleMRC dataset. We obey all licenses mentioned in llama3's work.
Performance
Reference-based Evaluation Result
Model | BLEU | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-Lsum | METEOR | BERTScore F1 |
---|---|---|---|---|---|---|---|
LLaMA3.1-8B-Instruct | 0.0226 | 0.2277 | 0.0615 | 0.1509 | 0.1650 | 0.2594 | 0.8478 |
LLaMA3.1-70B-Instruct | 0.0232 | 0.2258 | 0.0646 | 0.1500 | 0.1661 | 0.2632 | 0.8480 |
LLaMA3.1-8B-RoleMRC-SFT | 0.1782 | 0.4628 | 0.2676 | 0.3843 | 0.3853 | 0.3975 | 0.8831 |
LLaMA3.1-8B-RoleMRC-DPO | 0.1056 | 0.3989 | 0.1785 | 0.2988 | 0.3001 | 0.4051 | 0.8805 |
General Benchmark
Model | GSM8K 8-shot | Math 4-shot | GPQA 0-shot | IFEval 3-shot | MMLU-Pro 5-shot | MMLU 0-shot | PiQA 3-shot | MUSR 0-shot | TruthfulQA 3-shot | / Avg. |
---|---|---|---|---|---|---|---|---|---|---|
LLAMA3.1-8B | 48.98 | 17.78 | 12.5 | 16.67 | 35.21 | 63.27 | 81.77 | 38.1 | 28.52 | 38.09 |
LLAMA3.1-8B-INSTRUCT | 77.41 | 34.1 | 12.72 | 57.67 | 40.77 | 68.1 | 82.1 | 39.81 | 36.47 | 49.91 |
LLaMA3.1-8B-RoleMRC-SFT | 56.18 | 12.78 | 19.64 | 42.09 | 31.58 | 59.3 | 82.64 | 40.34 | 35.01 | 42.17 |
LLaMA3.1-8B-RoleMRC-DPO | 58.53 | 13.5 | 20.09 | 46.64 | 31.8 | 59.96 | 82.7 | 39.42 | 37.33 | 43.33 |
Evaluation Details
Five conditional benchmarks, using lm-evaluation-harness:
- GSM8K: 8-shot, report strict match
- IFEval: 3-shot, report instruction-level strict accuracy
- PiQA: 3-shot, report accuracy
- MMLU: 0-shot, report normalized accuracy
- TruthfulQA: 3-shot, report accuracy of single-true mc1 setting
Input Format
The model is trained to use the following format:
<|start_header_id|>user<|end_header_id|>
{PROMPT}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
{Response}
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-5
- total_train_batch_size: 16
- optimizer: AdamW with beta1 0.9, beta2 0.999 and epsilon 1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.04
- num_epochs: 1.0
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.