lora

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the flock_task5_tranning dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3370

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • total_eval_batch_size: 2
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss
1.6968 0.4255 5 1.6353
1.4036 0.8511 10 1.5311
1.5081 1.3404 15 1.4970
1.4796 1.7660 20 1.4684
1.5587 2.2553 25 1.4455
1.2971 2.6809 30 1.4280
1.465 3.1702 35 1.4097
1.3267 3.5957 40 1.3954
1.3003 4.0851 45 1.3800
1.1868 4.5106 50 1.3672
1.3354 4.9362 55 1.3562
1.1273 5.4255 60 1.3492
1.2471 5.8511 65 1.3439
1.1704 6.3404 70 1.3409
1.1422 6.7660 75 1.3381
1.2064 7.2553 80 1.3379
1.2972 7.6809 85 1.3370

Framework versions

  • PEFT 0.12.0
  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
63
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for jerseyjerry/task-5-microsoft-Phi-3-mini-4k-instruct-20250222

Adapter
(758)
this model