File size: 2,756 Bytes
e2584c2 bdfdfb1 e2584c2 bdfdfb1 e2584c2 bdfdfb1 e2584c2 bdfdfb1 e2584c2 bdfdfb1 e2584c2 bdfdfb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: google-bert/bert-base-german-cased
tags:
- generated_from_trainer
model-index:
- name: bert-mapa-german
results: []
language:
- de
---
# bert-mapa-german
This model is a fine-tuned version of [google-bert/bert-base-german-cased](https://huggingface.co/google-bert/bert-base-german-cased) on the MAPA german dataset.
It's purpose is to discern private information within German texts.
It achieves the following results on the test set:
| Category | Precision | Recall | F1 | Number |
|---------------|------------|------------|------------|--------|
| Address | 0.5882 | 0.6667 | 0.625 | 15 |
| Age | 0.0 | 0.0 | 0.0 | 3 |
| Amount | 1.0 | 1.0 | 1.0 | 1 |
| Date | 0.9455 | 0.9455 | 0.9455 | 55 |
| Name | 0.7 | 0.9545 | 0.8077 | 22 |
| Organisation | 0.5405 | 0.6452 | 0.5882 | 31 |
| Person | 0.5385 | 0.5 | 0.5185 | 14 |
| Role | 0.0 | 0.0 | 0.0 | 1 |
| Overall | 0.7255 | 0.7817 | 0.7525 | |
- Loss: 0.0325
- Overall Accuracy: 0.9912
## Intended uses & limitations
This model is engineered for the purpose of discerning private information within German texts. Its training corpus comprises only 1744 example sentences, thereby leading to a higher frequency of errors in its predictions.
## Training and evaluation data
Random split of the MAPA german dataset into 80% train, 10% valdiation and 10% test.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| No log | 1.0 | 218 | 0.0607 | 0.6527 | 0.7786 | 0.7101 | 0.9859 |
| No log | 2.0 | 436 | 0.0479 | 0.7355 | 0.8143 | 0.7729 | 0.9896 |
| 0.116 | 3.0 | 654 | 0.0414 | 0.7712 | 0.8429 | 0.8055 | 0.9908 |
| 0.116 | 4.0 | 872 | 0.0421 | 0.7857 | 0.8643 | 0.8231 | 0.9917 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.1.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 |