jbroermann commited on
Commit
bdfdfb1
·
verified ·
1 Parent(s): e2584c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -28
README.md CHANGED
@@ -6,40 +6,40 @@ tags:
6
  model-index:
7
  - name: bert-mapa-german
8
  results: []
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
  # bert-mapa-german
15
 
16
- This model is a fine-tuned version of [google-bert/bert-base-german-cased](https://huggingface.co/google-bert/bert-base-german-cased) on the None dataset.
17
- It achieves the following results on the evaluation set:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  - Loss: 0.0325
19
- - Address: {'precision': 0.5882352941176471, 'recall': 0.6666666666666666, 'f1': 0.625, 'number': 15}
20
- - Age: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
21
- - Amount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
22
- - Date: {'precision': 0.9454545454545454, 'recall': 0.9454545454545454, 'f1': 0.9454545454545454, 'number': 55}
23
- - Name: {'precision': 0.7, 'recall': 0.9545454545454546, 'f1': 0.8076923076923077, 'number': 22}
24
- - Organisation: {'precision': 0.5405405405405406, 'recall': 0.6451612903225806, 'f1': 0.588235294117647, 'number': 31}
25
- - Person: {'precision': 0.5384615384615384, 'recall': 0.5, 'f1': 0.5185185185185186, 'number': 14}
26
- - Role: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
27
- - Overall Precision: 0.7255
28
- - Overall Recall: 0.7817
29
- - Overall F1: 0.7525
30
  - Overall Accuracy: 0.9912
31
 
32
- ## Model description
33
-
34
- More information needed
35
 
36
  ## Intended uses & limitations
37
 
38
- More information needed
39
 
40
  ## Training and evaluation data
41
 
42
- More information needed
43
 
44
  ## Training procedure
45
 
@@ -56,12 +56,12 @@ The following hyperparameters were used during training:
56
 
57
  ### Training results
58
 
59
- | Training Loss | Epoch | Step | Validation Loss | Address | Amount | Date | Marital status | Name | Organisation | Person | Profession | Role | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
60
- |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
61
- | No log | 1.0 | 218 | 0.0607 | {'precision': 0.5882352941176471, 'recall': 0.6666666666666666, 'f1': 0.625, 'number': 15} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.851063829787234, 'recall': 0.9090909090909091, 'f1': 0.8791208791208791, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.76, 'recall': 0.9047619047619048, 'f1': 0.8260869565217391, 'number': 21} | {'precision': 0.4915254237288136, 'recall': 0.725, 'f1': 0.5858585858585859, 'number': 40} | {'precision': 0.5, 'recall': 0.6153846153846154, 'f1': 0.5517241379310345, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | 0.6527 | 0.7786 | 0.7101 | 0.9859 |
62
- | No log | 2.0 | 436 | 0.0479 | {'precision': 0.65, 'recall': 0.8666666666666667, 'f1': 0.7428571428571429, 'number': 15} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.8958333333333334, 'recall': 0.9772727272727273, 'f1': 0.9347826086956522, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.6774193548387096, 'recall': 1.0, 'f1': 0.8076923076923077, 'number': 21} | {'precision': 0.5897435897435898, 'recall': 0.575, 'f1': 0.5822784810126582, 'number': 40} | {'precision': 0.7857142857142857, 'recall': 0.8461538461538461, 'f1': 0.8148148148148148, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | 0.7355 | 0.8143 | 0.7729 | 0.9896 |
63
- | 0.116 | 3.0 | 654 | 0.0414 | {'precision': 0.65, 'recall': 0.8666666666666667, 'f1': 0.7428571428571429, 'number': 15} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.8958333333333334, 'recall': 0.9772727272727273, 'f1': 0.9347826086956522, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.7407407407407407, 'recall': 0.9523809523809523, 'f1': 0.8333333333333334, 'number': 21} | {'precision': 0.725, 'recall': 0.725, 'f1': 0.7250000000000001, 'number': 40} | {'precision': 0.6666666666666666, 'recall': 0.7692307692307693, 'f1': 0.7142857142857142, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | 0.7712 | 0.8429 | 0.8055 | 0.9908 |
64
- | 0.116 | 4.0 | 872 | 0.0421 | {'precision': 0.65, 'recall': 0.8666666666666667, 'f1': 0.7428571428571429, 'number': 15} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 0.8958333333333334, 'recall': 0.9772727272727273, 'f1': 0.9347826086956522, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.8, 'recall': 0.9523809523809523, 'f1': 0.8695652173913043, 'number': 21} | {'precision': 0.6818181818181818, 'recall': 0.75, 'f1': 0.7142857142857143, 'number': 40} | {'precision': 0.8571428571428571, 'recall': 0.9230769230769231, 'f1': 0.888888888888889, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | 0.7857 | 0.8643 | 0.8231 | 0.9917 |
65
 
66
 
67
  ### Framework versions
@@ -69,4 +69,4 @@ The following hyperparameters were used during training:
69
  - Transformers 4.40.0
70
  - Pytorch 2.1.0+cu121
71
  - Datasets 2.19.0
72
- - Tokenizers 0.19.1
 
6
  model-index:
7
  - name: bert-mapa-german
8
  results: []
9
+ language:
10
+ - de
11
  ---
12
 
 
 
 
13
  # bert-mapa-german
14
 
15
+ This model is a fine-tuned version of [google-bert/bert-base-german-cased](https://huggingface.co/google-bert/bert-base-german-cased) on the MAPA german dataset.
16
+ It's purpose is to discern private information within German texts.
17
+
18
+ It achieves the following results on the test set:
19
+
20
+ | Category | Precision | Recall | F1 | Number |
21
+ |---------------|------------|------------|------------|--------|
22
+ | Address | 0.5882 | 0.6667 | 0.625 | 15 |
23
+ | Age | 0.0 | 0.0 | 0.0 | 3 |
24
+ | Amount | 1.0 | 1.0 | 1.0 | 1 |
25
+ | Date | 0.9455 | 0.9455 | 0.9455 | 55 |
26
+ | Name | 0.7 | 0.9545 | 0.8077 | 22 |
27
+ | Organisation | 0.5405 | 0.6452 | 0.5882 | 31 |
28
+ | Person | 0.5385 | 0.5 | 0.5185 | 14 |
29
+ | Role | 0.0 | 0.0 | 0.0 | 1 |
30
+ | Overall | 0.7255 | 0.7817 | 0.7525 | |
31
+
32
  - Loss: 0.0325
 
 
 
 
 
 
 
 
 
 
 
33
  - Overall Accuracy: 0.9912
34
 
 
 
 
35
 
36
  ## Intended uses & limitations
37
 
38
+ This model is engineered for the purpose of discerning private information within German texts. Its training corpus comprises only 1744 example sentences, thereby leading to a higher frequency of errors in its predictions.
39
 
40
  ## Training and evaluation data
41
 
42
+ Random split of the MAPA german dataset into 80% train, 10% valdiation and 10% test.
43
 
44
  ## Training procedure
45
 
 
56
 
57
  ### Training results
58
 
59
+ | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
60
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|
61
+ | No log | 1.0 | 218 | 0.0607 | 0.6527 | 0.7786 | 0.7101 | 0.9859 |
62
+ | No log | 2.0 | 436 | 0.0479 | 0.7355 | 0.8143 | 0.7729 | 0.9896 |
63
+ | 0.116 | 3.0 | 654 | 0.0414 | 0.7712 | 0.8429 | 0.8055 | 0.9908 |
64
+ | 0.116 | 4.0 | 872 | 0.0421 | 0.7857 | 0.8643 | 0.8231 | 0.9917 |
65
 
66
 
67
  ### Framework versions
 
69
  - Transformers 4.40.0
70
  - Pytorch 2.1.0+cu121
71
  - Datasets 2.19.0
72
+ - Tokenizers 0.19.1