ynat-model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4185
- Accuracy: 0.8588
- Precision: 0.8479
- Recall: 0.8732
- F1: 0.8598
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3865 | 1.0 | 714 | 0.4500 | 0.8445 | 0.8282 | 0.8727 | 0.8476 |
0.2937 | 2.0 | 1428 | 0.3973 | 0.8587 | 0.8522 | 0.8690 | 0.8596 |
0.2145 | 3.0 | 2142 | 0.4185 | 0.8588 | 0.8479 | 0.8732 | 0.8598 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Model tree for jbh6357/ynat-model
Base model
monologg/koelectra-base-v3-discriminator