eladven's picture
Evaluation results for janeel/muppet-roberta-base-finetuned-squad model as a base model for other tasks
ebf8984
|
raw
history blame
3.98 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - squad_v2
model-index:
  - name: muppet-roberta-base-finetuned-squad
    results: []

muppet-roberta-base-finetuned-squad

This model is a fine-tuned version of facebook/muppet-roberta-base on the squad_v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9017

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.7007 1.0 8239 0.7905
0.4719 2.0 16478 0.9017

Framework versions

  • Transformers 4.20.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1

Model Recycling

Evaluation on 36 datasets using janeel/muppet-roberta-base-finetuned-squad as a base model yields average score of 78.04 in comparison to 76.22 by roberta-base.

The model is ranked 2nd among all tested models for the roberta-base architecture as of 21/12/2022 Results:

20_newsgroup ag_news amazon_reviews_multi anli boolq cb cola copa dbpedia esnli financial_phrasebank imdb isear mnli mrpc multirc poem_sentiment qnli qqp rotten_tomatoes rte sst2 sst_5bins stsb trec_coarse trec_fine tweet_ev_emoji tweet_ev_emotion tweet_ev_hate tweet_ev_irony tweet_ev_offensive tweet_ev_sentiment wic wnli wsc yahoo_answers
84.8911 89.6667 67.16 53.5937 82.3853 82.1429 81.8792 62 77.7667 91.3375 85.6 94.116 72.9465 86.5541 89.4608 64.2533 87.5 92.6963 91.0017 90.7129 83.7545 95.9862 58.1448 91.2944 97 90.6 46.464 82.1956 54.3771 80.102 84.8837 71.8496 70.2194 39.4366 63.4615 71.9333

For more information, see: Model Recycling