metadata
license: mit
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: muppet-roberta-base-finetuned-squad
results: []
muppet-roberta-base-finetuned-squad
This model is a fine-tuned version of facebook/muppet-roberta-base on the squad_v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.9017
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7007 | 1.0 | 8239 | 0.7905 |
0.4719 | 2.0 | 16478 | 0.9017 |
Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
Model Recycling
Evaluation on 36 datasets using janeel/muppet-roberta-base-finetuned-squad as a base model yields average score of 78.04 in comparison to 76.22 by roberta-base.
The model is ranked 2nd among all tested models for the roberta-base architecture as of 21/12/2022 Results:
20_newsgroup | ag_news | amazon_reviews_multi | anli | boolq | cb | cola | copa | dbpedia | esnli | financial_phrasebank | imdb | isear | mnli | mrpc | multirc | poem_sentiment | qnli | qqp | rotten_tomatoes | rte | sst2 | sst_5bins | stsb | trec_coarse | trec_fine | tweet_ev_emoji | tweet_ev_emotion | tweet_ev_hate | tweet_ev_irony | tweet_ev_offensive | tweet_ev_sentiment | wic | wnli | wsc | yahoo_answers |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
84.8911 | 89.6667 | 67.16 | 53.5937 | 82.3853 | 82.1429 | 81.8792 | 62 | 77.7667 | 91.3375 | 85.6 | 94.116 | 72.9465 | 86.5541 | 89.4608 | 64.2533 | 87.5 | 92.6963 | 91.0017 | 90.7129 | 83.7545 | 95.9862 | 58.1448 | 91.2944 | 97 | 90.6 | 46.464 | 82.1956 | 54.3771 | 80.102 | 84.8837 | 71.8496 | 70.2194 | 39.4366 | 63.4615 | 71.9333 |
For more information, see: Model Recycling