jackmedda's picture
End of training
960c565 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/bigbird-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: >-
      jackmedda/google-bigbird-roberta-base_finetuned_augmented_augmented_deepseek
    results: []

jackmedda/google-bigbird-roberta-base_finetuned_augmented_augmented_deepseek

This model is a fine-tuned version of google/bigbird-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3040
  • Accuracy: 0.7647
  • F1: 0.8571
  • Precision: 0.8
  • Recall: 0.9231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4568 1.0 46 0.7344 0.7 0.8235 0.7 1.0
0.6053 2.0 92 0.6889 0.7 0.8235 0.7 1.0
0.5004 3.0 138 0.6289 0.7 0.8235 0.7 1.0
0.6076 4.0 184 0.6493 0.7 0.8235 0.7 1.0
0.3798 5.0 230 0.7945 0.7 0.8235 0.7 1.0
0.2401 6.0 276 1.2776 0.7 0.8235 0.7 1.0
0.4076 7.0 322 1.1325 0.7 0.8235 0.7 1.0
0.1193 8.0 368 1.1424 0.7 0.8235 0.7 1.0
0.3332 9.0 414 0.9214 0.8 0.875 0.7778 1.0
0.1445 10.0 460 0.2424 0.9 0.9333 0.875 1.0
0.0029 11.0 506 1.6181 0.7 0.8235 0.7 1.0
0.1174 12.0 552 0.0031 1.0 1.0 1.0 1.0
0.0014 13.0 598 1.2314 0.8 0.875 0.7778 1.0
0.0011 14.0 644 1.1105 0.8 0.875 0.7778 1.0
0.0008 15.0 690 1.2286 0.8 0.875 0.7778 1.0
0.0008 16.0 736 1.2704 0.8 0.875 0.7778 1.0
0.0006 17.0 782 1.3157 0.8 0.875 0.7778 1.0
0.0005 18.0 828 1.3290 0.8 0.875 0.7778 1.0
0.0005 19.0 874 1.3752 0.8 0.875 0.7778 1.0
0.0004 20.0 920 1.3951 0.8 0.875 0.7778 1.0

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0