jackmedda/answerdotai-ModernBERT-base_finetuned_augmented_augmented_llama3.1_70b
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3533
- Accuracy: 0.8529
- F1: 0.9057
- Precision: 0.8889
- Recall: 0.9231
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.1821 | 1.0 | 46 | 1.4390 | 0.7 | 0.8235 | 0.7 | 1.0 |
0.4314 | 2.0 | 92 | 2.0516 | 0.7 | 0.8235 | 0.7 | 1.0 |
0.4297 | 3.0 | 138 | 0.9376 | 0.7 | 0.8235 | 0.7 | 1.0 |
0.8537 | 4.0 | 184 | 0.4869 | 0.8 | 0.875 | 0.7778 | 1.0 |
0.5462 | 5.0 | 230 | 0.6324 | 0.7 | 0.8235 | 0.7 | 1.0 |
0.7564 | 6.0 | 276 | 1.6793 | 0.8 | 0.875 | 0.7778 | 1.0 |
0.1617 | 7.0 | 322 | 0.8602 | 0.8 | 0.875 | 0.7778 | 1.0 |
0.7177 | 8.0 | 368 | 2.4837 | 0.8 | 0.875 | 0.7778 | 1.0 |
0.0738 | 9.0 | 414 | 2.7746 | 0.8 | 0.875 | 0.7778 | 1.0 |
0.0059 | 10.0 | 460 | 1.4319 | 0.8 | 0.875 | 0.7778 | 1.0 |
0.0 | 11.0 | 506 | 2.3943 | 0.8 | 0.875 | 0.7778 | 1.0 |
0.0 | 12.0 | 552 | 2.4313 | 0.8 | 0.875 | 0.7778 | 1.0 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for jackmedda/answerdotai-ModernBERT-base_finetuned_augmented_augmented_llama3.1_70b
Base model
answerdotai/ModernBERT-base