jackmedda's picture
End of training
ce36dca verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: >-
      jackmedda/answerdotai-ModernBERT-base_finetuned_augmented_augmented_chatgpt4
    results: []

jackmedda/answerdotai-ModernBERT-base_finetuned_augmented_augmented_chatgpt4

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6009
  • Accuracy: 0.8529
  • F1: 0.9123
  • Precision: 0.8387
  • Recall: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7541 1.0 46 1.0379 0.7 0.8235 0.7 1.0
0.6904 2.0 92 0.6320 0.7 0.8235 0.7 1.0
0.5034 3.0 138 0.5816 0.7 0.8 0.75 0.8571
0.4788 4.0 184 0.6822 0.7 0.8235 0.7 1.0
0.4101 5.0 230 1.0326 0.7 0.8235 0.7 1.0
0.3942 6.0 276 0.9368 0.7 0.8235 0.7 1.0
0.3482 7.0 322 0.7998 0.7 0.8235 0.7 1.0
0.5565 8.0 368 1.0760 0.7 0.8235 0.7 1.0
0.2264 9.0 414 1.0318 0.8 0.875 0.7778 1.0
0.3199 10.0 460 0.6990 0.7 0.8 0.75 0.8571
0.6271 11.0 506 1.3217 0.7 0.8235 0.7 1.0
0.5053 12.0 552 2.2078 0.7 0.8235 0.7 1.0
0.4181 13.0 598 1.9610 0.8 0.875 0.7778 1.0
0.0041 14.0 644 2.4483 0.8 0.875 0.7778 1.0
0.1389 15.0 690 1.2595 0.8 0.875 0.7778 1.0
0.1238 16.0 736 1.8522 0.8 0.875 0.7778 1.0
0.003 17.0 782 1.9726 0.8 0.875 0.7778 1.0

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0