jackmedda's picture
End of training
9c989f7 verified
metadata
library_name: transformers
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: >-
      jackmedda/allenai-longformer-base-4096_finetuned_augmented_augmented_deepseek
    results: []

jackmedda/allenai-longformer-base-4096_finetuned_augmented_augmented_deepseek

This model is a fine-tuned version of allenai/longformer-base-4096 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6944
  • Accuracy: 0.8529
  • F1: 0.9091
  • Precision: 0.8621
  • Recall: 0.9615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6234 1.0 46 0.8497 0.7 0.8235 0.7 1.0
0.6942 2.0 92 0.8268 0.7 0.8235 0.7 1.0
0.4943 3.0 138 0.5841 0.7 0.8235 0.7 1.0
0.4528 4.0 184 0.5123 0.7 0.8235 0.7 1.0
0.2654 5.0 230 1.1415 0.7 0.8235 0.7 1.0
0.2954 6.0 276 0.5154 0.9 0.9333 0.875 1.0
0.4836 7.0 322 0.5581 0.9 0.9333 0.875 1.0
0.0019 8.0 368 0.7121 0.9 0.9333 0.875 1.0
0.1174 9.0 414 0.8265 0.9 0.9333 0.875 1.0
0.0005 10.0 460 0.7687 0.9 0.9333 0.875 1.0
0.0004 11.0 506 0.6626 0.9 0.9333 0.875 1.0
0.0003 12.0 552 0.5331 0.9 0.9333 0.875 1.0
0.0002 13.0 598 0.6969 0.9 0.9333 0.875 1.0
0.0003 14.0 644 0.5765 0.9 0.9333 0.875 1.0

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0